1 research outputs found

    2012 IEEE 26th International Parallel and Distributed Processing Symposium Advancing Large Scale Many-Body QMC Simulations on GPU Accelerated Multicore Systems

    No full text
    method is one of the most powerful approaches for understanding properties of an important class of materials with strongly interacting electrons, including magnets and superconductors. It treats these interactions exactly, but the solution of a system of N electrons must be extrapolated to bulk values. Currently N β‰ˆ 500 is state-of-the-art. Increasing N is required before DQMC can be used to model newly synthesized materials like functional multilayers. DQMC requires millions of linear algebra computations of order N matrices and scales as N 3. DQMC cannot exploit parallel distributed memory computers efficiently due to limited scalability with the small matrix sizes and stringent procedures for numerical stability. Today, the combination of multisocket multicore processors and GPUs provides widely available platforms with new opportunities for DQMC parallelization
    corecore