19 research outputs found

    Performance study of video streaming in commercial UMTS network

    Full text link
    This paper studies the performance of a real-time application in a live Universal Mobile Telecommunication System (UMTS) network. In the study, special user equipment (UE) capable of collecting performance parameters such as throughput and bit error rate (BER) was used. Two scenarios are considered in this paper: typical scenario when soft handover (SHO) is enabled and an extreme scenario when a situation of cell edge is created by forcing the terminal to strictly connect to one cell. The experiment results show various aspects of practical implementations and protocols which are currently used in live UMTS network. In the typical scenario, when a code with a large spreading factor (SF) is in use, the required signal-to-noise ratio target (SIRT) is low. In the cell edge case, a code with high SF of 32 is used in a poor radio condition. There results are consistent with the relevant theory. © 2008 IEEE

    Investigating the Performance of VOIP over WLAN in Campus Network

    Get PDF
    Voice will remain a fundamental communication media that cuts across people of all walks of life. VoIP, a new technology has been increasingly popular in recent times due to its affordability and reduced cost in making calls over broadband Internet. This paper uses simulation method to specifically investigate the performance of VoIP over wireless LAN for an increased number of VoIP calls, the use of different coding scheme and increased number of workstations in video conferencing. With this, a determination of the actual number of VoIP calls that each wireless Access point can adequately support with enhanced voice quality was made alongside with the coding scheme that yields the best quality of service in wireless LAN. KEYWORDS: Voice Over Internet Protocol (VOIP), Public switched telephone Network (PSTN), Jitter, Internet

    Multipath routing for video delivery over bandwidth-limited networks

    Get PDF
    The delivery of quality video service often requires high bandwidth with low delay or cost in network transmission. Current routing protocols such as those used in the Internet are mainly based on the single-path approach (e.g., the shortest-path routing). This approach cannot meet the end-to-end bandwidth requirement when the video is streamed over bandwidth-limited networks. In order to overcome this limitation, we propose multipath routing, where the video takes multiple paths to reach its destination(s), thereby increasing the aggregate throughput. We consider both unicast (point-to-point) and multicast scenarios. For unicast, we present an efficient multipath heuristic (of complexity O(|V|3)), which achieves high bandwidth with low delay. Given a set of path lengths, we then present and prove a simple data scheduling algorithm as implemented at the server, which achieves the theoretical minimum end-to-end delay. For a network with unit-capacity links, the algorithm, when combined with disjoint-path routing, offers an exact and efficient solution to meet a bandwidth requirement with minimum delay. For multicast, we study the construction of multiple trees for layered video to satisfy the user bandwidth requirements. We propose two efficient heuristics on how such trees can be constructed so as to minimize the cost of their aggregation subject to a delay constraint.published_or_final_versio

    Development of a Quality of Service Framework for Multimedia Streaming Applications

    Get PDF
    By the year 2012, it is expected that the majority of all Internet traffic will be video content. Coupled with this is the increasing availability of Wireless Local Area Networks (WLANs) due to their ease of deployment, flexibility and reducing roll out costs. Unfortunately the contention based access mechanism utilised by IEEE 802.11 WLANs does not suit the non-uniform or bursty bandwidth profile of a video stream which can lead to a reduced quality of service (QoS) being experienced by the end-user. In 2005, the IEEE 802.11e protocol was ratified in an attempt to solve this emerging problem. It provides for an access prioritization mechanism based upon four separate traffic classes or access categories (ACs). Each AC is characterised by a set of access parameters that determine its level of access priority which is turn determines the amount of bandwidth available to it. Computer simulation studies have shown that AC prioritisation can yield significant improvements in the QoS delivered over a WLAN. However, these studies have been based upon the use of static access parameters for the ACs. In practice, this is not a viable solution owing to the dynamic and unpredictable nature of the operating conditions on WLANs. In this thesis, an experimental study of AC prioritisation based upon adaptive tuning of the access parameters is presented. This new approach to bandwidth provisioning for video streaming is shown to yield significant improvements in the QoS under a wide range of different operating conditions. For example, it is shown that by adaptively tuning the access control parameters in response to the network conditions, the number of video frames delivered that satisfy QoS requirements is more than doubled

    QoS based Radio Resource Management Techniques for Next Generation MU-MIMO WLANs: A Survey

    Get PDF
    IEEE 802.11 based Wireless Local Area Networks (WLANs) have emerged as a popular candidate that offers Internet services for wireless users. The demand of data traffic is increasing every day due to the increase in the use of multimedia applications, such as digital audio, video, and online gaming. With the inclusion of Physical Layer (PHY) technologies, such as the OFDM and MIMO, the current 802.11ac WLANs are claiming Gigabit speeds. Hence, the existing Medium Access Control (MAC) must be in a suitable position to convert the offered PHY data rates for efficient throughput. Further, the integration of cellular networks with WLANs requires unique changes at MAC layer. It is highly required to preserve the Quality of Service (QoS) in these scenarios. Fundamentally, many QoS issues arise from the problem of effective Radio Resource Management (RRM). Although IEEE 802.11 has lifted PHY layer aspects, there is a necessity to investigate MAC layer issues, such as resource utilization, scheduling, admission control and congestion control. In this survey, a literature overview of these techniques, namely the resource allocation and scheduling algorithms are briefly discussed in connection with the QoS at MAC layer. Further, some anticipated enhancements proposed for Multi-User Multiple-Input and Multiple-Output (MU-MIMO) WLANs are discussed

    Dynamic Service Management in Heterogeneous Networks

    Full text link

    Constrained shortest paths for QoS routing and path protection in communication networks.

    Get PDF
    The CSDP (k) problem requires the selection of a set of k > 1 link-disjoint paths with minimum total cost and with total delay bounded by a given upper bound. This problem arises in the context of provisioning paths in a network that could be used to provide resilience to link failures. Again we studied the LP relaxation of the ILP formulation of the problem from the primal perspective and proposed an approximation algorithm.We have studied certain combinatorial optimization problems that arise in the context of two important problems in computer communication networks: end-to-end Quality of Service (QoS) and fault tolerance. These problems can be modeled as constrained shortest path(s) selection problems on networks with each of their links associated with additive weights representing the cost, delay etc.The problems considered above assume that the network status is known and accurate. However, in real networks, this assumption is not realistic. So we considered the QoS route selection problem under inaccurate state information. Here the goal is to find a path with the highest probability that satisfies a given delay upper bound. We proposed a pseudo-polynomial time approximation algorithm, a fully polynomial time approximation scheme, and a strongly polynomial time heuristic for this problem.Finally we studied the constrained shortest path problem with multiple additive constraints. Using the LARAC algorithm as a building block and combining ideas from mathematical programming, we proposed a new approximation algorithm.First we studied the QoS single route selection problem, i.e., the constrained shortest path (CSP) problem. The goal of the CSP problem is to identify a minimum cost route which incurs a delay less than a specified bound. It can be formulated as an integer linear programming (ILP) problem which is computationally intractable. The LARAC algorithm reported in the literature is based on the dual of the linear programming relaxation of the ILP formulation and gives an approximate solution. We proposed two new approximation algorithms solving the dual problem. Next, we studied the CSP problem using the primal simplex method and exploiting certain structural properties of networks. This led to a novel approximation algorithm
    corecore