342 research outputs found

    Energy Efficient Design of Extreme MIMO

    Full text link
    Ever since the invention of Bell Laboratories Layer Space-Time (BLAST) in mid 1990s, the focus of MIMO research and development has been largely on pushing the limit of spectral efficiency. While massive MIMO technologies laid the foundation of high throughput in 5G and beyond, energy efficiency of the associated radio system leaves much room for improvement. With the substantial negative implications of climate change looming ever closer, enabling sustainability is of paramount importance for any future technology, and minimizing energy use is a key dimension of achieving sustainability. Thus, every aspect of future extreme MIMO system design, implementation, and operation will be scrutinized to maximize energy efficiency. An analysis of the massive MIMO 5G radio energy consumption at different loads leads to qualitative energy efficiency design goals for emerging extreme MIMO systems. Following this, we focus on novel operational and component technology innovations to minimize energy consumption.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice (Revised to focus on extreme MIMO

    Meeting IMT 2030 Performance Targets: The Potential of OTFDM Waveform and Structural MIMO Technologies

    Full text link
    The white paper focuses on several candidate technologies that could play a crucial role in the development of 6G systems. Two of the key technologies explored in detail are Orthogonal Time Frequency Division Multiplexing (OTFDM) waveform and Structural MIMO (S-MIMO)

    Spectrally and Energy Efficient Wireless Communications: Signal and System Design, Mathematical Modelling and Optimisation

    Get PDF
    This thesis explores engineering studies and designs aiming to meeting the requirements of enhancing capacity and energy efficiency for next generation communication networks. Challenges of spectrum scarcity and energy constraints are addressed and new technologies are proposed, analytically investigated and examined. The thesis commences by reviewing studies on spectrally and energy-efficient techniques, with a special focus on non-orthogonal multicarrier modulation, particularly spectrally efficient frequency division multiplexing (SEFDM). Rigorous theoretical and mathematical modelling studies of SEFDM are presented. Moreover, to address the potential application of SEFDM under the 5th generation new radio (5G NR) heterogeneous numerologies, simulation-based studies of SEFDM coexisting with orthogonal frequency division multiplexing (OFDM) are conducted. New signal formats and corresponding transceiver structure are designed, using a Hilbert transform filter pair for shaping pulses. Detailed modelling and numerical investigations show that the proposed signal doubles spectral efficiency without performance degradation, with studies of two signal formats; uncoded narrow-band internet of things (NB-IoT) signals and unframed turbo coded multi-carrier signals. The thesis also considers using constellation shaping techniques and SEFDM for capacity enhancement in 5G system. Probabilistic shaping for SEFDM is proposed and modelled to show both transmission energy reduction and bandwidth saving with advantageous flexibility for data rate adaptation. Expanding on constellation shaping to improve performance further, a comparative study of multidimensional modulation techniques is carried out. A four-dimensional signal, with better noise immunity is investigated, for which metaheuristic optimisation algorithms are studied, developed, and conducted to optimise bit-to-symbol mapping. Finally, a specially designed machine learning technique for signal and system design in physical layer communications is proposed, utilising the application of autoencoder-based end-to-end learning. Multidimensional signal modulation with multidimensional constellation shaping is proposed and optimised by using machine learning techniques, demonstrating significant improvement in spectral and energy efficiencies

    PAPR and BER Analysis in FBMC/OQAM System with Pulse Shaping Filters and Various PAPR Minimization Methods

    Get PDF
    Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation(FBMC/OQAM) system design based on frequency sampling prototype filter takes into account the low frequency utilization of Orthogonal Frequency Division Multiplexing(OFDM)  caused by adding Cyclic Prefix(CP). The CP decreases spectral efficiency and increases Peak to Average Power Ratio(PAPR). FBMC is an OFDM enhancement. In this paper to reduce the PAPR, we explained companding methods. We have proposed an FBMC that makes use of prototype pulse shaping filters which can be adjusted to meet system requirements in order to defeat these limitations. Due to its significant effect on the performance of FBMC-OQAM, choosing the right filter is crucial. Different prototype filters are used to investigate the performance of the FBMC-OQAM in this paper. Using the validated system, it was found that frequency utilization is more and good out-band suppression as well as an excellent application value in 5G technology. By using ?-law companding method, FBMC/OQAM provides better performance. It produces low PAPR, low out of band(OoB), high BER performance, less computational complexity and high spectral efficiency as compared to other methods
    • …
    corecore