6 research outputs found

    Conjecturally Superpolynomial Lower Bound for Share Size

    Get PDF
    Information ratio, which measures the maximum/average share size per shared bit, is a criterion of efficiency of a secret sharing scheme. It is generally believed that there exists a family of access structures such that the information ratio of any secret sharing scheme realizing it is 2Ω(n)2^{\Omega(n)}, where the parameter nn stands for the number of participants. The best known lower bound, due to Csirmaz (1994), is Ω(n/log⁥n)\Omega(n/\log n). Closing this gap is a long-standing open problem in cryptology. In this paper, using a technique called \emph{substitution}, we recursively construct a family of access structures having information ratio nlog⁥nlog⁥log⁥nn^{\frac{\log n}{\log \log n}}, assuming a well-stated information-theoretic conjecture is true. Our conjecture emerges after introducing the notion of \emph{convec set} for an access structure, a subset of nn-dimensional real space. We prove some topological properties about convec sets and raise several open problems

    Quantum Differential and Linear Cryptanalysis

    Get PDF
    Quantum computers, that may become available one day, would impact many scientific fields, most notably cryptography since many asymmetric primitives are insecure against an adversary with quantum capabilities. Cryptographers are already anticipating this threat by proposing and studying a number of potentially quantum-safe alternatives for those primitives. On the other hand, symmetric primitives seem less vulnerable against quantum computing: the main known applicable result is Grover's algorithm that gives a quadratic speed-up for exhaustive search. In this work, we examine more closely the security of symmetric ciphers against quantum attacks. Since our trust in symmetric ciphers relies mostly on their ability to resist cryptanalysis techniques, we investigate quantum cryptanalysis techniques. More specifically, we consider quantum versions of differential and linear cryptanalysis. We show that it is usually possible to use quantum computations to obtain a quadratic speed-up for these attack techniques, but the situation must be nuanced: we don't get a quadratic speed-up for all variants of the attacks. This allows us to demonstrate the following non-intuitive result: the best attack in the classical world does not necessarily lead to the best quantum one. We give some examples of application on ciphers LAC and KLEIN. We also discuss the important difference between an adversary that can only perform quantum computations, and an adversary that can also make quantum queries to a keyed primitive.Comment: 25 page

    A New Linear Distinguisher for Four-Round AES

    Get PDF
    In SAC’14, Biham and Carmeli presented a novel attack on DES, involving a variation of Partitioning Cryptanalysis. This was further extended in ToSC’18 by Biham and Perle into the Conditional Linear Cryptanalysis in the context of Feistel ciphers. In this work, we formalize this cryptanalytic technique for block ciphers in general and derive several properties. This conditional approximation is then used to approximate the inv : GF(2^8) → GF(2^8) : x → x^254 function which forms the only source of non-linearity in the AES. By extending the approximation to encompass the full AES round function, a linear distinguisher for four-round AES in the known-plaintext model is constructed; the existence of which is often understood to be impossible. We furthermore demonstrate a key-recovery attack capable of extracting 32 bits of information in 4-round AES using 2^125.62 data and time. In addition to suggesting a new approach to advancing the cryptanalysis of the AES, this result moreover demonstrates a caveat in the standard interpretation of the Wide Trail Strategy — the design framework underlying many SPN-based ciphers published in recent years

    Conditional Linear Cryptanalysis – Cryptanalysis of DES with Less Than 242 Complexity

    Get PDF
    In this paper we introduce a new extension of linear cryptanalysis that may reduce the complexity of attacks by conditioning linear approximations on other linear approximations. We show that the bias of some linear approximations may increase under such conditions, so that after discarding the known plaintexts that do not satisfy the conditions, the bias of the remaining known plaintexts increases. We show that this extension can lead to improvements of attacks, which may require fewer known plaintexts and time of analysis. We present several types of such conditions, including one that is especially useful for the analysis of Feistel ciphers. We exemplify the usage of such conditions for attacks by a careful application of our extension to Matsui’s attack on the full 16-round DES, which succeeds to reduce the complexity of the best attack on DES to less than 242. We programmed a test implementation of our attack and verified our claimed results with a large number of runs. We also introduce a new type of approximations, to which we call scattered approximations, and discuss its applications
    corecore