1,695,176 research outputs found
Advanced interdisciplinary technologies
The following topics are presented in view graph form: (1) breakthrough trust (space research and technology assessment); (2) bionics (technology derivatives from biological systems); (3) biodynamics (modeling of human biomechanical performance based on anatomical data); and (4) tethered atmospheric research probes
Advanced space transportation technologies
A wide range of propulsion technologies for space transportation are discussed in the literature. It is clear from the literature review that a single propulsion technology cannot satisfy the many mission needs in space. Many of the technologies tested, proposed, or in experimental stages relate to: chemical and nuclear fuel; radiative and corpuscular external energy source; tethers; cannons; and electromagnetic acceleration. The scope and limitation of these technologies is well tabulated in the literature. Prior experience has shown that an extensive amount of fuel needs to be carried along for the return mission. This requirement puts additional constraints on the lift off rocket technology and limits the payload capacity. Consider the possibility of refueling in space. If the return fuel supply is guaranteed, it will not only be possible to lift off more payload but also to provide security and safety of the mission. Exploration to deep space where solar sails and thermal effects fade would also be possible. Refueling would also facilitate travel on the planet of exploration. This aspect of space transportation prompts the present investigation. The particle emissions from the Sun's corona will be collected under three different conditions: in space closer to the Sun, in the Van Allen Belts; and on the Moon. It is proposed to convert the particle state into gaseous, liquid, or solid state and store it for refueling space vehicles. These facilities may be called space pump stations and the fuel collected as space fuel. Preliminary estimates of fuel collection at all three sites will be made. Future work will continue towards advancing the art of collection rate and design schemes for pumping stations
Challenges of cloud technology in manufacturing environment
The rapid growth Information systems and advanced network technologies have significant impact on enterprises around the world. Enterprises are trying to gain competitive advantage in open global markets by using the latest technologies, along with advanced networks, to create collaboration, reduce costs, and maximize productivity. The combination of latest technologies and advanced manufacturing networks technologies lead to growth of new manufacturing model named Cloud Manufacturing which can shift the manufacturing industry from product-oriented manufacturing to services-oriented manufacturing. This paper explores the literature about the current Manufacturing problems, understands the concept of Cloud Computing Technology, introduces Cloud Manufacturing and its role in the enterprise, and investigates the obstacles and challenges of adopting Cloud Manufacturing in enterprises
Advanced technologies for Mission Control Centers
Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds
Low speed propellers: Impact of advanced technologies
Sensitivity studies performed to evaluate the potential of several advanced technological elements on propeller performance, noise, weight, and cost for general aviation aircraft are discussed. Studies indicate that the application of advanced technologies to general aviation propellers can reduce fuel consumption in future aircraft an average of ten percent, meeting current regulatory noise limits. Through the use of composite blade construction, up to 25 percent propeller weight reduction can be achieved. This weight reduction in addition to seven percent propeller efficiency improvements through application of advanced technologies result in four percent reduction in direct operating costs, ten percent reduction in aircraft acquisition cost, and seven percent lower gross weight for general aviation aircraft
Commercializing Alternative Fuels and Advanced Vehicle Technologies: The Government's Role
Alternative fuels and advanced vehicle technologies can reduce air pollution and protect public health, while also improving national security by reducing U.S. dependency on petroleum. Currently, transportation accounts for over two-thirds of all petroleum used in this country. While still maturing, many alternative fuels and advanced vehicle technologies are now practical. The Environmental and Energy Study Institute and the Northeast Sustainable Energy Association hosted a briefing in which panelists shared experiences with their use of hybrid technologies and compressed natural gas (CNG), biodiesel and clean diesel fuels. The panelists concluded that the remaining challenges in establishing the widespread use and availability of these technologies are not technical, but rather are economic in nature. Federal, state and local governments can play a large role in overcoming this economic barrier by encouraging wide-scale adoption of alternative fuels and advanced vehicle technologies in government fleets. This would provide the market demand necessary to jumpstart these technologies by giving manufacturers the incentive to increase investment and hasten the achievement of economies of scale
Assessment of the application of advanced technologies to subsonic CTOL transport aircraft
Design studies of the application of advanced technologies to future transport aircraft were conducted. These studies were reviewed from the perspective of an air carrier. A fundamental study of the elements of airplane operating cost was performed, and the advanced technologies were ranked in order of potential profit impact. Recommendations for future study areas are given
AFTI/F-16 digital flight control system experience
The Advanced Flighter Technology Integration (AFTI) F-16 program is investigating the integration of emerging technologies into an advanced fighter aircraft. The three major technologies involved are the triplex digital flight control system; decoupled aircraft flight control; and integration of avionics, pilot displays, and flight control. In addition to investigating improvements in fighter performance, the AFTI/F-16 program provides a look at generic problems facing highly integrated, flight-crucial digital controls. An overview of the AFTI/F-16 systems is followed by a summary of flight test experience and recommendations
Application of advanced technologies to small, short-haul transport aircraft (STAT)
The benefits of selected advanced technologies for 19 and 30 passenger, short-haul aircraft were identified. Advanced technologies were investigated in four areas: aerodynamics, propulsion, structures, and ride quality. Configuration sensitivity studies were conducted to show design tradeoffs associated with passenger capacity, cabin comfort level, and design field length
Application of advanced technologies to small, short-haul transport aircraft
The performance and economic benefits available by incorporation of advanced technologies into the small, short haul air transport were assessed. Low cost structure and advanced composite material, advanced turboprop engines and new propellers, advanced high lift systems and active controls; and alternate aircraft configurations with aft mounted engines were investigated. Improvements in fuel consumed and aircraft economics (acquisition cost and direct operating cost) are available by incorporating selected advanced technologies into the small, short haul aircraft
- …
