921 research outputs found

    Towards Normalizing the Edit Distance Using a Genetic Algorithms Based Scheme

    Full text link
    The normalized edit distance is one of the distances derived from the edit distance. It is useful in some applications because it takes into account the lengths of the two strings compared. The normalized edit distance is not defined in terms of edit operations but rather in terms of the edit path. In this paper we propose a new derivative of the edit distance that also takes into consideration the lengths of the two strings, but the new distance is related directly to the edit distance. The particularity of the new distance is that it uses the genetic algorithms to set the values of the parameters it uses. We conduct experiments to test the new distance and we obtain promising results.Comment: The 8th International Conference on Advanced Data Mining and Applications (ADMA 2012

    Environmental Sound Recognition using Masked Conditional Neural Networks

    Full text link
    Neural network based architectures used for sound recognition are usually adapted from other application domains, which may not harness sound related properties. The ConditionaL Neural Network (CLNN) is designed to consider the relational properties across frames in a temporal signal, and its extension the Masked ConditionaL Neural Network (MCLNN) embeds a filterbank behavior within the network, which enforces the network to learn in frequency bands rather than bins. Additionally, it automates the exploration of different feature combinations analogous to handcrafting the optimum combination of features for a recognition task. We applied the MCLNN to the environmental sounds of the ESC-10 dataset. The MCLNN achieved competitive accuracies compared to state-of-the-art convolutional neural networks and hand-crafted attempts.Comment: Boltzmann Machine, RBM, Conditional RBM, CRBM, Deep Neural Network, DNN, Conditional Neural Network, CLNN, Masked Conditional Neural Net-work, MCLNN, Environmental Sound Recognition, ESR, Advanced Data Mining and Applications (ADMA) Year: 201

    DANAA: Towards transferable attacks with double adversarial neuron attribution

    Full text link
    While deep neural networks have excellent results in many fields, they are susceptible to interference from attacking samples resulting in erroneous judgments. Feature-level attacks are one of the effective attack types, which targets the learnt features in the hidden layers to improve its transferability across different models. Yet it is observed that the transferability has been largely impacted by the neuron importance estimation results. In this paper, a double adversarial neuron attribution attack method, termed `DANAA', is proposed to obtain more accurate feature importance estimation. In our method, the model outputs are attributed to the middle layer based on an adversarial non-linear path. The goal is to measure the weight of individual neurons and retain the features that are more important towards transferability. We have conducted extensive experiments on the benchmark datasets to demonstrate the state-of-the-art performance of our method. Our code is available at: https://github.com/Davidjinzb/DANAAComment: Accepted by 19th International Conference on Advanced Data Mining and Applications. (ADMA 2023

    Particle Swarm Optimization of Information-Content Weighting of Symbolic Aggregate Approximation

    Full text link
    Bio-inspired optimization algorithms have been gaining more popularity recently. One of the most important of these algorithms is particle swarm optimization (PSO). PSO is based on the collective intelligence of a swam of particles. Each particle explores a part of the search space looking for the optimal position and adjusts its position according to two factors; the first is its own experience and the second is the collective experience of the whole swarm. PSO has been successfully used to solve many optimization problems. In this work we use PSO to improve the performance of a well-known representation method of time series data which is the symbolic aggregate approximation (SAX). As with other time series representation methods, SAX results in loss of information when applied to represent time series. In this paper we use PSO to propose a new minimum distance WMD for SAX to remedy this problem. Unlike the original minimum distance, the new distance sets different weights to different segments of the time series according to their information content. This weighted minimum distance enhances the performance of SAX as we show through experiments using different time series datasets.Comment: The 8th International Conference on Advanced Data Mining and Applications (ADMA 2012
    corecore