144,042 research outputs found

    Unsteady adjoint of pressure loss for a fundamental transonic turbine vane

    Full text link
    High fidelity simulations, e.g., large eddy simulation are often needed for accurately predicting pressure losses due to wake mixing in turbomachinery applications. An unsteady adjoint of such high fidelity simulations is useful for design optimization in these aerodynamic applications. In this paper we present unsteady adjoint solutions using a large eddy simulation model for a vane from VKI using aerothermal objectives. The unsteady adjoint method is effective in capturing the gradient for a short time interval aerothermal objective, whereas the method provides diverging gradients for long time-averaged thermal objectives. As the boundary layer on the suction side near the trailing edge of the vane is turbulent, it poses a challenge for the adjoint solver. The chaotic dynamics cause the adjoint solution to diverge exponentially from the trailing edge region when solved backwards in time. This results in the corruption of the sensitivities obtained from the adjoint solutions. An energy analysis of the unsteady compressible Navier-Stokes adjoint equations indicates that adding artificial viscosity to the adjoint equations can potentially dissipate the adjoint energy while potentially maintain the accuracy of the adjoint sensitivities. Analyzing the growth term of the adjoint energy provides a metric for identifying the regions in the flow where the adjoint term is diverging. Results for the vane from simulations performed on the Titan supercomputer are demonstrated.Comment: ASME Turbo Expo 201

    Probability density adjoint for sensitivity analysis of the Mean of Chaos

    Full text link
    Sensitivity analysis, especially adjoint based sensitivity analysis, is a powerful tool for engineering design which allows for the efficient computation of sensitivities with respect to many parameters. However, these methods break down when used to compute sensitivities of long-time averaged quantities in chaotic dynamical systems. The following paper presents a new method for sensitivity analysis of {\em ergodic} chaotic dynamical systems, the density adjoint method. The method involves solving the governing equations for the system's invariant measure and its adjoint on the system's attractor manifold rather than in phase-space. This new approach is derived for and demonstrated on one-dimensional chaotic maps and the three-dimensional Lorenz system. It is found that the density adjoint computes very finely detailed adjoint distributions and accurate sensitivities, but suffers from large computational costs.Comment: 29 pages, 27 figure

    Physical regularization for the spin-1/2 Aharonov-Bohm problem in conical space

    Full text link
    We examine the bound state and scattering problem of a spin-one-half particle undergone to an Aharonov-Bohm potential in a conical space in the nonrelativistic limit. The crucial problem of the \delta-function singularity coming from the Zeeman spin interaction with the magnetic flux tube is solved through the self-adjoint extension method. Using two different approaches already known in the literature, both based on the self-adjoint extension method, we obtain the self-adjoint extension parameter to the bound state and scattering scenarios in terms of the physics of the problem. It is shown that such a parameter is the same for both situations. The method is general and is suitable for any quantum system with a singular Hamiltonian that has bound and scattering states.Comment: Revtex4, 5 pages, published versio

    Proper incorporation of self-adjoint extension method to Green's function formalism : one-dimensional δ\delta^{'}-function potential case

    Get PDF
    One-dimensional δ\delta^{'}-function potential is discussed in the framework of Green's function formalism without invoking perturbation expansion. It is shown that the energy-dependent Green's function for this case is crucially dependent on the boundary conditions which are provided by self-adjoint extension method. The most general Green's function which contains four real self-adjoint extension parameters is constructed. Also the relation between the bare coupling constant and self-adjoint extension parameter is derived.Comment: LATEX, 13 page
    corecore