34,709 research outputs found

    Taming Uncertainty in the Assurance Process of Self-Adaptive Systems: a Goal-Oriented Approach

    Full text link
    Goals are first-class entities in a self-adaptive system (SAS) as they guide the self-adaptation. A SAS often operates in dynamic and partially unknown environments, which cause uncertainty that the SAS has to address to achieve its goals. Moreover, besides the environment, other classes of uncertainty have been identified. However, these various classes and their sources are not systematically addressed by current approaches throughout the life cycle of the SAS. In general, uncertainty typically makes the assurance provision of SAS goals exclusively at design time not viable. This calls for an assurance process that spans the whole life cycle of the SAS. In this work, we propose a goal-oriented assurance process that supports taming different sources (within different classes) of uncertainty from defining the goals at design time to performing self-adaptation at runtime. Based on a goal model augmented with uncertainty annotations, we automatically generate parametric symbolic formulae with parameterized uncertainties at design time using symbolic model checking. These formulae and the goal model guide the synthesis of adaptation policies by engineers. At runtime, the generated formulae are evaluated to resolve the uncertainty and to steer the self-adaptation using the policies. In this paper, we focus on reliability and cost properties, for which we evaluate our approach on the Body Sensor Network (BSN) implemented in OpenDaVINCI. The results of the validation are promising and show that our approach is able to systematically tame multiple classes of uncertainty, and that it is effective and efficient in providing assurances for the goals of self-adaptive systems

    Addressing Risk and Uncertainty in Water Quality Trading Markets

    Get PDF
    Across the United States, water quality trading is being explored as a mechanism for reducing the costs of cleaning up impaired waterbodies. Trading between point sources, such as wastewater treatment plants, and nonpoint sources, such as agriculture, can cut costs for regulated entities needing to reduce pollutants, and generate revenue for agricultural producers who generate credits. However, water quality trading, particularly between point and nonpoint sources, can face inherent uncertainties around quantification of nonpoint source reductions, participant behavior, regulations, and market supply and demand. Effectively addressing uncertainties is crucial to ensuring the success of these markets and improving water quality. This paper establishes a framework from which to engage federal and state agencies, program developers, and stakeholders in a dialogue about these uncertainties and appropriate mechanisms for addressing them

    Software engineering for self-adaptive systems:research challenges in the provision of assurances

    Get PDF
    The important concern for modern software systems is to become more cost-effective, while being versatile, flexible, resilient, dependable, energy-efficient, customisable, configurable and self-optimising when reacting to run-time changes that may occur within the system itself, its environment or requirements. One of the most promising approaches to achieving such properties is to equip software systems with self-managing capabilities using self-adaptation mechanisms. Despite recent advances in this area, one key aspect of self-adaptive systems that remains to be tackled in depth is the provision of assurances, i.e., the collection, analysis and synthesis of evidence that the system satisfies its stated functional and non-functional requirements during its operation in the presence of self-adaptation. The provision of assurances for self-adaptive systems is challenging since run-time changes introduce a high degree of uncertainty. This paper on research challenges complements previous roadmap papers on software engineering for self-adaptive systems covering a different set of topics, which are related to assurances, namely, perpetual assurances, composition and decomposition of assurances, and assurances obtained from control theory. This research challenges paper is one of the many results of the Dagstuhl Seminar 13511 on Software Engineering for Self-Adaptive Systems: Assurances which took place in December 2013

    Adaptive Governance and Evolving Solutions to Natural Resource Conflicts

    Get PDF
    New Zealand is facing increasing challenges in managing natural resources (land, freshwater, marine space and air quality) under pressures from domestic (population growth, agricultural intensification, cultural expectations) and international (climate change) sources. These challenges can be described in terms of managing ‘wicked problems’; i.e. problems that may not be understood fully until they have been solved, where stakeholders have different world views and frames for understanding the problem, the constraints affecting the problem and the resources required to solve it change over time, and no complete solution is ever actually found. Adaptive governance addresses wicked problems through a framework to engage stakeholders in a participative process to create a long term vision. The vision must identify competing goals and a process for balancing them over time that acknowledges conflicts cannot always be resolved in a single lasting decision. Circumstances, goals and priorities can all vary over time and by region. The Resource Management Act can be seen as an adaptive governance structure where frameworks for resources such as water may take years to evolve and decades to fully implement. Adaptive management is about delivery through an incremental/experimental approach, limits on the certainty that governments can provide and stakeholders can demand, and flexibility in processes and results. In New Zealand it also requires balancing central government expertise and resources, with local authorities which can reflect local goals and knowledge, but have varying resources and can face quite distinct issues of widely differing severity. It is important to signal the incremental, overlapping, iterative and time-consuming nature of the work involved in developing and implementing adaptive governance and management frameworks. Managing the expectations of those involved as to the nature of the process and their role in it, and the scope and timing of likely outcomes, is key to sustaining participation.Adaptive capacity; governance; resilience

    Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks

    Full text link
    The benefits of autonomous vehicles (AVs) are widely acknowledged, but there are concerns about the extent of these benefits and AV risks and unintended consequences. In this article, we first examine AVs and different categories of the technological risks associated with them. We then explore strategies that can be adopted to address these risks, and explore emerging responses by governments for addressing AV risks. Our analyses reveal that, thus far, governments have in most instances avoided stringent measures in order to promote AV developments and the majority of responses are non-binding and focus on creating councils or working groups to better explore AV implications. The US has been active in introducing legislations to address issues related to privacy and cybersecurity. The UK and Germany, in particular, have enacted laws to address liability issues, other countries mostly acknowledge these issues, but have yet to implement specific strategies. To address privacy and cybersecurity risks strategies ranging from introduction or amendment of non-AV specific legislation to creating working groups have been adopted. Much less attention has been paid to issues such as environmental and employment risks, although a few governments have begun programmes to retrain workers who might be negatively affected.Comment: Transport Reviews, 201

    SACRE: Supporting contextual requirements' adaptation in modern self-adaptive systems in the presence of uncertainty at runtime

    Full text link
    Runtime uncertainty such as unpredictable resource unavailability, changing environmental conditions and user needs, as well as system intrusions or faults represents one of the main current challenges of self-adaptive systems. Moreover, today's systems are increasingly more complex, distributed, decentralized, etc. and therefore have to reason about and cope with more and more unpredictable events. Approaches to deal with such changing requirements in complex today's systems are still missing. This work presents SACRE (Smart Adaptation through Contextual REquirements), our approach leveraging an adaptation feedback loop to detect self-adaptive systems' contextual requirements affected by uncertainty and to integrate machine learning techniques to determine the best operationalization of context based on sensed data at runtime. SACRE is a step forward of our former approach ACon which focus had been on adapting the context in contextual requirements, as well as their basic implementation. SACRE primarily focuses on architectural decisions, addressing self-adaptive systems' engineering challenges. Furthering the work on ACon, in this paper, we perform an evaluation of the entire approach in different uncertainty scenarios in real-time in the extremely demanding domain of smart vehicles. The real-time evaluation is conducted in a simulated environment in which the smart vehicle is implemented through software components. The evaluation results provide empirical evidence about the applicability of SACRE in real and complex software system domains.Comment: 45 pages, journal article, 14 figures, 9 tables, CC-BY-NC-ND 4.0 licens
    corecore