10,282 research outputs found

    Strong superadditivity of the entanglement of formation follows from its additivity

    Full text link
    The additivity of both the entanglement of formation and the classical channel capacity is known to be a consequence of the strong superadditivity conjecture. We show that, conversely, the strong superadditivity conjecture follows from the additivity of the entanglement of formation; this means that the two conjectures are equivalent and that the additivity of the classical channel capacity is a consequence of them.Comment: revtex, 7 pages, research at Quantware MIPS Center http://www.quantware.ups-tlse.f

    On Shor's channel extension and constrained channels

    Full text link
    In this paper we give several equivalent formulations of the additivity conjecture for constrained channels, which formally is substantially stronger than the unconstrained additivity. To this end a characteristic property of the optimal ensemble for such a channel is derived, generalizing the maximal distance property. It is shown that the additivity conjecture for constrained channels holds true for certain nontrivial classes of channels. Recently P. Shor showed that conjectured additivity properties for several quantum information quantities are in fact equivalent. After giving an algebraic formulation for the Shor's channel extension, its main asymptotic property is proved. It is then used to show that additivity for two constrained channels can be reduced to the same problem for unconstrained channels, and hence, "global" additivity for channels with arbitrary constraints is equivalent to additivity without constraints.Comment: 19 pages; substantially revised and enhanced. To appear in Commun. Math. Phy

    Yet another additivity conjecture

    Full text link
    It is known that the additivity conjecture of Holevo capacity, output minimum entoropy, and the entanglement of formation (EoF), are equivalent with each other. Among them, the output minimum entropy is simplest, and hence many researchers are focusing on this quantity. Here, we suggest yet another entanglement measure, whose strong superadditivity and additivity are equivalent to the additivity of the quantities mentioned above. This quantity is as simple as the output minimum entropy, and in existing proofs of additivity conjecture of the output minimum entropy for the specific examples, they are essentially proving the strong superadditivity of this quantity.Comment: corrections of typo, etc. minor revisio

    Equivalence of Additivity Questions in Quantum Information Theory

    Full text link
    We reduce the number of open additivity problems in quantum information theory by showing that four of them are equivalent. We show that the conjectures of additivity of the minimum output entropy of a quantum channel, additivity of the Holevo expression for the classical capacity of a quantum channel, additivity of the entanglement of formation, and strong superadditivity of the entanglement of formation, are either all true or all false.Comment: now 20 pages, replaced to add a reference, remove a reference to a claimed result about locally minimal output entropy states (my proof of this was incorrect), correct minor typos, and add more explanation for the background of these conjecture

    Entanglement entropy and vacuum states in Schwarzschild geometry

    Full text link
    Recently, it was proposed that there must be either large violation of the additivity conjecture or a set of disentangled states of the black hole in the AdS/CFT correspondence. In this paper, we study the additivity conjecture for quantum states of fields around the Schwarzschild black hole. In the eternal Schwarzschild spacetime, the entanglement entropy of the Hawking radiation is calculated assuming that the vacuum state is the Hartle-Hawking vacuum. In the additivity conjecture, we need to consider the state which gives minimal output entropy of a quantum channel. The Hartle-Hawking vacuum state does not give the minimal output entropy which is consistent with the additivity conjecture. We study the entanglement entropy in other static vacua and show that it is consistent with the additivity conjecture.Comment: 31 pages, 1 figure; v2: 33 pages, minor corrections, references adde

    Counterexample to an additivity conjecture for output purity of quantum channels

    Get PDF
    A conjecture arising naturally in the investigation of additivity of classical information capacity of quantum channels states that the maximal purity of outputs from a quantum channel, as measured by the p-norm, should be multiplicative with respect to the tensor product of channels. We disprove this conjecture for p>4.79. The same example (with p=infinity) also disproves a conjecture for the multiplicativity of the injective norm of Hilbert space tensor products.Comment: 3 pages, 3 figures, revte
    • …
    corecore