124,141 research outputs found
The potential of additive manufacturing in the smart factory industrial 4.0: A review
Additive manufacturing (AM) or three-dimensional (3D) printing has introduced a novel production method in design, manufacturing, and distribution to end-users. This technology has provided great freedom in design for creating complex components, highly customizable products, and efficient waste minimization. The last industrial revolution, namely industry 4.0, employs the integration of smart manufacturing systems and developed information technologies. Accordingly, AM plays a principal role in industry 4.0 thanks to numerous benefits, such as time and material saving, rapid prototyping, high efficiency, and decentralized production methods. This review paper is to organize a comprehensive study on AM technology and present the latest achievements and industrial applications. Besides that, this paper investigates the sustainability dimensions of the AM process and the added values in economic, social, and environment sections. Finally, the paper concludes by pointing out the future trend of AM in technology, applications, and materials aspects that have the potential to come up with new ideas for the future of AM explorations
Research Towards High Speed Freeforming
Additive manufacturing (AM) methods are currently utilised for the manufacture of prototypes and low volume, high cost parts. This is because in most cases the high material costs and low volumetric deposition rates of AM parts result in higher per part cost than traditional manufacturing methods. This paper brings together recent research aimed at improving the economics of AM, in particular Extrusion Freeforming (EF).
A new class of machine is described called High Speed Additive Manufacturing (HSAM) in which software, hardware and materials advances are aggregated. HSAM could be cost competitive with injection moulding for medium sized medium quantity parts. A general outline for a HSAM machine and supply chain is provided along with future required research
Survey on Additive Manufacturing, Cloud 3D Printing and Services
Cloud Manufacturing (CM) is the concept of using manufacturing resources in a
service oriented way over the Internet. Recent developments in Additive
Manufacturing (AM) are making it possible to utilise resources ad-hoc as
replacement for traditional manufacturing resources in case of spontaneous
problems in the established manufacturing processes. In order to be of use in
these scenarios the AM resources must adhere to a strict principle of
transparency and service composition in adherence to the Cloud Computing (CC)
paradigm. With this review we provide an overview over CM, AM and relevant
domains as well as present the historical development of scientific research in
these fields, starting from 2002. Part of this work is also a meta-review on
the domain to further detail its development and structure
Recommended from our members
Design for Additive Manufacturing: A Method to Explore Unexplored Regions of the Design Space
Additive Manufacturing (AM) technologies enable the fabrication of parts and devices that
are geometrically complex, have graded material compositions, and can be customized. To take
advantage of these capabilities, it is important to assist designers in exploring unexplored regions
of design spaces. We present a Design for Additive Manufacturing (DFAM) method that
encompasses conceptual design, process selection, later design stages, and design for
manufacturing. The method is based on the process-structure-property-behavior model that is
common in the materials design literature. A prototype CAD system is presented that embodies
the method. Manufacturable ELements (MELs) are proposed as an intermediate representation
for supporting the manufacturing related aspects of the method. Examples of cellular materials
are used to illustrate the DFAM method.Mechanical Engineerin
Comparison of Different Additive Manufacturing Methods Using Optimized Computed Tomography
Additive manufacturing (AM) allows for fast fabrication of three dimensional objects with the possibility of use of considerably less resources than would be the case in traditional manufacturing. AM is a fast and cost effective method which boasts the ability to produce components with a previously unachievable level of geometric complexity in end user industrial applications in areas such as the aerospace and automotive industries. However these processes currently lack reproducibility and repeatability with some ‘prints’ having a high rate requiring rework or even scrapping. It is therefore imperative that robust quality systems can be implemented such that the waste level of these processes can be eliminated or decreased. This study presents an artefact that has been optimised for characterisation using computed tomography (CT) with representative AM internal channels and structures. Furthermore the optimisation of the CT acquisition conditions for this artefact is presented in light of analysis of form, internal feature dimensions and position and material porosity
Towards Fully Additively-Manufactured Permanent Magnet Synchronous Machines: Opportunities and Challenges
With the growing interest in electrification and as hybrid and pure electric powertrains are adopted in more applications, electrical machine design is facing challenges in terms of meeting very demanding performance metrics for example high specific power, harsh environments, etc. This provides clear motivation to explore the impact of advanced materials and manufacturing on the performance of electrical machines. This paper provides an overview of additive manufacturing (AM) approaches that can be used for constructing permanent magnet (PM) machines, with a specific focus on additively-manufactured iron core, winding, insulation, PM as well as cooling systems. Since there has only been a few attempts so far to explore AM in electrical machines (especially when it comes to fully additively-manufactured machines), the benefits and challenges of AM have not been comprehensively understood. In this regard, this paper offers a detailed comparison of multiple multi-material AM methods, showing not only the possibility of fully additively-manufactured PM machines but also the potential significant improvements in their mechanical, electromagnetic and thermal properties. The paper will provide a comprehensive discussion of opportunities and challenges of AM in the context of electrical machines
Self-supporting structure design in additive manufacturing through explicit topology optimization
One of the challenging issues in additive manufacturing (AM) oriented
topology optimization is how to design structures that are self-supportive in a
manufacture process without introducing additional supporting materials. In the
present contribution, it is intended to resolve this problem under an explicit
topology optimization framework where optimal structural topology can be found
by optimizing a set of explicit geometry parameters. Two solution approaches
established based on the Moving Morphable Components (MMC) and Moving Morphable
Voids (MMV) frameworks, respectively, are proposed and some theoretical issues
associated with AM oriented topology optimization are also analyzed. Numerical
examples provided demonstrate the effectiveness of the proposed methods.Comment: 81 pages, 45 figure
- …
