28,206 research outputs found

    GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search

    Full text link
    In this paper, we propose GraphSE2^2, an encrypted graph database for online social network services to address massive data breaches. GraphSE2^2 preserves the functionality of social search, a key enabler for quality social network services, where social search queries are conducted on a large-scale social graph and meanwhile perform set and computational operations on user-generated contents. To enable efficient privacy-preserving social search, GraphSE2^2 provides an encrypted structural data model to facilitate parallel and encrypted graph data access. It is also designed to decompose complex social search queries into atomic operations and realise them via interchangeable protocols in a fast and scalable manner. We build GraphSE2^2 with various queries supported in the Facebook graph search engine and implement a full-fledged prototype. Extensive evaluations on Azure Cloud demonstrate that GraphSE2^2 is practical for querying a social graph with a million of users.Comment: This is the full version of our AsiaCCS paper "GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search". It includes the security proof of the proposed scheme. If you want to cite our work, please cite the conference version of i

    On the Complexity of Computing an Equilibrium in Combinatorial Auctions

    Full text link
    We study combinatorial auctions where each item is sold separately but simultaneously via a second price auction. We ask whether it is possible to efficiently compute in this game a pure Nash equilibrium with social welfare close to the optimal one. We show that when the valuations of the bidders are submodular, in many interesting settings (e.g., constant number of bidders, budget additive bidders) computing an equilibrium with good welfare is essentially as easy as computing, completely ignoring incentives issues, an allocation with good welfare. On the other hand, for subadditive valuations, we show that computing an equilibrium requires exponential communication. Finally, for XOS (a.k.a. fractionally subadditive) valuations, we show that if there exists an efficient algorithm that finds an equilibrium, it must use techniques that are very different from our current ones

    Testing probability distributions underlying aggregated data

    Full text link
    In this paper, we analyze and study a hybrid model for testing and learning probability distributions. Here, in addition to samples, the testing algorithm is provided with one of two different types of oracles to the unknown distribution DD over [n][n]. More precisely, we define both the dual and cumulative dual access models, in which the algorithm AA can both sample from DD and respectively, for any i∈[n]i\in[n], - query the probability mass D(i)D(i) (query access); or - get the total mass of {1,…,i}\{1,\dots,i\}, i.e. ∑j=1iD(j)\sum_{j=1}^i D(j) (cumulative access) These two models, by generalizing the previously studied sampling and query oracle models, allow us to bypass the strong lower bounds established for a number of problems in these settings, while capturing several interesting aspects of these problems -- and providing new insight on the limitations of the models. Finally, we show that while the testing algorithms can be in most cases strictly more efficient, some tasks remain hard even with this additional power
    • …
    corecore