8 research outputs found

    Counting Real Connected Components of Trinomial Curve Intersections and m-nomial Hypersurfaces

    Full text link
    We prove that any pair of bivariate trinomials has at most 5 isolated roots in the positive quadrant. The best previous upper bounds independent of the polynomial degrees were much larger, e.g., 248832 (for just the non-degenerate roots) via a famous general result of Khovanski. Our bound is sharp, allows real exponents, allows degeneracies, and extends to certain systems of n-variate fewnomials, giving improvements over earlier bounds by a factor exponential in the number of monomials. We also derive analogous sharpened bounds on the number of connected components of the real zero set of a single n-variate m-nomial.Comment: 27 pages, 2 figures. Extensive revision of math.CO/0008069. To appear in Discrete and Computational Geometry. Technique from main theorem (Theorem 1) now pushed as far as it will go. In particular, Theorem 1 now covers certain fewnomial systems of type (n+1,...,n+1,m) and certain non-sparse fewnomial systems. Also, a new result on counting non-compact connected components of fewnomial hypersurfaces (Theorem 3) has been adde

    On the limit of families of algebraic subvarieties with unbounded volume

    Get PDF
    We prove that the limit of a sequence of generic semi-algebraic sets given by a finite number of formulas always exists and is a semi-algebraic set that can be explicitly given as a Boolean expression involving the primitives of the additive forms of the formulas

    Représentations des polynômes, algorithmes et bornes inférieures

    Get PDF
    La complexité algorithmique est l'étude des ressources nécessaires le temps, la mémoire, pour résoudre un problème de manière algorithmique. Dans ce cadre, la théorie de la complexité algébrique est l'étude de la complexité algorithmique de problèmes de nature algébrique, concernant des polynômes.Dans cette thèse, nous étudions différents aspects de la complexité algébrique. D'une part, nous nous intéressons à l'expressivité des déterminants de matrices comme représentations des polynômes dans le modèle de complexité de Valiant. Nous montrons que les matrices symétriques ont la même expressivité que les matrices quelconques dès que la caractéristique du corps est différente de deux, mais que ce n'est plus le cas en caractéristique deux. Nous construisons également la représentation la plus compacte connue du permanent par un déterminant. D'autre part, nous étudions la complexité algorithmique de problèmes algébriques. Nous montrons que la détection de racines dans un système de n polynômes homogènes à n variables est NP-difficile. En lien avec la question VP = VNP ? , version algébrique de P = NP ? , nous obtenons une borne inférieure pour le calcul du permanent d'une matrice par un circuit arithmétique, et nous exhibons des liens unissant ce problème et celui du test d'identité polynomiale. Enfin nous fournissons des algorithmes efficaces pour la factorisation des polynômes lacunaires à deux variables.Computational complexity is the study of the resources time, memory, needed to algorithmically solve a problem. Within these settings, algebraic complexity theory is the study of the computational complexity of problems of algebraic nature, concerning polynomials. In this thesis, we study several aspects of algebraic complexity. On the one hand, we are interested in the expressiveness of the determinants of matrices as representations of polynomials in Valiant's model of complexity. We show that symmetric matrices have the same expressiveness as the ordinary matrices as soon as the characteristic of the underlying field in different from two, but that this is not the case anymore in characteristic two. We also build the smallest known representation of the permanent by a determinant.On the other hand, we study the computational complexity of algebraic problems. We show that the detection of roots in a system of n homogeneous polynomials in n variables in NP-hard. In line with the VP = VNP ? question, which is the algebraic version of P = NP? we obtain a lower bound for the computation of the permanent of a matrix by an arithmetic circuit, and we point out the links between this problem and the polynomial identity testing problem. Finally, we give efficient algorithms for the factorization of lacunary bivariate polynomials.LYON-ENS Sciences (693872304) / SudocSudocFranceF
    corecore