219,972 research outputs found
Synthesis of neutral nickel catalysts for ethylene polymerization – the influence of ligand size on catalyst stability
A facile synthesis of nickel salicylaldimine complexes with labile dissociating ligands is described. In addition to producing highly active ethylene polymerization catalysts, important insights into the effect of ligand size on catalyst stability and information on the mechanism of polymerization are provided
Adsorption behaviour of molecularly imprinted-beta-cyclodextrin polymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization for selective recognition of benzylparaben
Molecularly imprinted polymers (MIPs) are kinds of powerful materials with promising
selective molecule recognition abilities. However, the conventional MIPs have relatively
low binding capacity. In order to improve this characteristic of MIPs, the modification
monomer based on β-cyclodextrin (β-CD) and the essential of reversible addition�fragmentation chain transfer (RAFT) polymerization process were studied to generate
potential MIPs. The study focuses on the characterization and adsorption behaviour of
MIPs for selective recognition of benzylparaben (BzP) analyte. The potential of β-CD in
MIP was investigated by synthesizing a reversible addition-fragmentation chain transfer
molecularly imprinted methacrylic acid functionalized β-cyclodextrin polymer; RAFT�MIP(MAA-β-CD) based on methacrylic acid functionalized β-cyclodextrin (MAA-β-CD)
monomer, which was then compared to a reversible addition-fragmentation chain transfer
molecularly imprinted methacrylic acid polymer; RAFT-MIP(MAA) synthesized without
β-CD. Both MIPs were prepared by the RAFT polymerization process in bulk
polymerization method. The resulting MIPs were characterized using Fourier Transform
Infrared Spectroscopy (FTIR), Field Scanning Electron Microscope (FESEM) and
Brunauer-Emmett-Teller (BET) analysis. The batch adsorption study that includes
studying of the pH, kinetic, isotherm and thermodynamic was conducted. The essential
of RAFT polymerization on MIP was studied by comparing RAFT-MIP(MAA-β-CD)
with the molecularly imprinted methacrylic acid functionalized β-cyclodextrin polymer;
MIP(MAA-β-CD) was synthesized without RAFT agent, and characterized by using
FTIR, elemental analysis, FESEM and BET. The binding experiments demonstrated that
the RAFT-MIP(MAA-β-CD) has a higher binding capacity and higher accessibility
compared to RAFT-MIP(MAA) and MIP(MAA-β-CD) for selective of BzP, respectively.
The β-CD and RAFT polymerization process improved the MIP’s physical properties and
iv
enhanced its recognition capacity, thus affecting the adsorption behaviour of RAFT�MIP(MAA-β-CD). The effects of RAFT polymerization process were also investigated
by a reversible addition-fragmentation transfer molecularly imprinted hydroxylethyl
methacrylate functionalized β-cyclodextrin polymer; RAFT-MIP(HEMA-β-CD). The
RAFT-MIP(HEMA-β-CD) was synthesized based on the hydroxylethyl-methacrylate
functionalized β-cyclodextrin (HEMA-β-CD) monomer and was prepared by the RAFT
polymerization process in bulk polymerization method. The molecularly imprinted
hydroxylethyl-methacrylate functionalized β-cyclodextrin polymer; MIP(HEMA-β-CD)
without a RAFT agent was synthesized as comparison. A similar study to RAFT�MIP(MAA-β-CD) had also been carried out for RAFT-MIP(HEMA-β-CD).The effects
of RAFT polymerization on RAFT-MIP(HEMA-β-CD) were contrasted with RAFT�MIP(MAA-β-CD). The compact and non-porous morphology of RAFT-MIP(HEMA-β�CD) reduces its binding capacity performance compared to MIP(HEMA-β-CD). Thus,
this directly affected the RAFT-MIP(HEMA-β-CD) adsorption behaviour towards BzP.
It was resulted that the RAFT polymerization had not improved the synthesis of RAFT�MIP(HEMA-β-CD). Careful choice of RAFT agent and monomer is essential in realizing
good control over the RAFT-MIP polymerization process, and generating potential MIP
Scope and limitations of aliphatic Friedel-Crafts alkylations. Lewis acid catalyzed addition reactions of alkyl chlorides to carbon-carbon double bonds
Lewis acid catalyzed addition reactions of alkyl halides 1 with unsaturated hydrocarbons 2 have been studied.
1:l addition products 3 are formed if the addends 1 dissociate faster than the corresponding products 3; otherwise,
polymerization of 2 takes place. For reaction conditions under which 1 and 3 exist mainly undissociated, solvolysis
constants of model compounds can be used to predict the outcome of any such addition reactions if systems with
considerable steric hindrance are excluded
Melt block copolymerization of ε-caprolactone and L-lactide
AB block copolymers of ε-caprolactone and (L)-lactide could be prepared by ring-opening polymerization in the melt at 110°C using stannous octoate as a catalyst and ethanol as an initiator provided ε-caprolactone was polymerized first. Ethanol initiated the polymerization of ε-caprolactone producing a polymer with ε-caprolactone derived hydroxyl end groups which after addition of L-lactide in the second step of the polymerization initiated the ring-opening copolymerization of L-lactide. The number-average molecular weights of the poly(ε-caprolactone) blocks varied from 1.5 to 5.2 × 103, while those of the poly(L-lactide) blocks ranged from 17.4 to 49.7 × 103. The polydispersities of the block copolymers varied from 1.16 to 1.27. The number-average molecular weights of the polymers were controlled by the monomer/hydroxyl group ratio, and were independent on the monomer/stannous octoate ratio within the range of experimental conditions studied. When L-lactide was polymerized first, followed by copolymerization of ε-caprolactone, random copolymers were obtained. The formation of random copolymers was attributed to the occurrence of transesterification reactions. These side reactions were caused by the ε-caprolactone derived hydroxyl end groups generated during the copolymerization of ε-caprolactone with pre-polymers of L-lactide. The polymerization proceeds through an ester alcoholysis reaction mechanism, in which the stannous octoate activated ester groups of the monomers react with hydroxyl groups
Sulfo-SMCC Prevents Annealing of Taxol-Stabilized Microtubules In Vitro
Microtubule structure and functions have been widely studied in vitro and in
cells. Research has shown that cysteines on tubulin play a crucial role in the
polymerization of microtubules. Here, we show that blocking sulfhydryl groups
of cysteines in taxol-stabilized polymerized microtubules with a commonly used
chemical crosslinker prevents temporal end-to-end annealing of microtubules in
vitro. This can dramatically affect the length distribution of the
microtubules. The crosslinker sulfosuccinimidyl
4-(N-maleimidomethyl)cyclohexane-1-carboxylate, sulfo-SMCC, consists of a
maleimide and an N-hydroxysuccinimide ester group to bind to sulfhydryl groups
and primary amines, respectively. Interestingly, addition of a maleimide dye
alone does not show the same interference with annealing in stabilized
microtubules. This study shows that the sulfhydryl groups of cysteines of
tubulin that are vital for the polymerization are also important for the
subsequent annealing of microtubules.Comment: 3 figure
Poly(2-cyclopropyl-2-oxazoline): from rate acceleration by Cyclopropyl to Thermoresponsive properties
The synthesis and microwave-assisted living cationic ring-opening polymerization of 2-cyclopropyl-2-oxazoline is reported revealing the fastest polymerization for an aliphatic substituted 2-oxazoline to date, which is ascribed to the electron withdrawing effect of the cyclopropyl group. The poly(2-cyclopropyl-2-oxazoline) (pCPropOx) represents an alternative thermo-responsive poly(2-oxazoline) with a reversible critical temperature close to body temperature. The cloud point (CP) of the obtained pCPropOx in aqueous solution was evaluated in detail by turbidimetry, dynamic light scattering (DLS) and viscosity measurements. pCPropOx is amorphous with a significantly higher glass transition temperature (T(g) similar to 80 degrees C) compared to the amorphous poly(2-n-propyl-2-oxazoline) (pnPropOx) (T(g) similar to 40 degrees C), while poly(2-isopropyl-2-oxazoline) piPropOx is semicrystalline. In addition, a pCPropOx comb polymer was prepared by methacrylic acid end-capping of the living cationic species followed by RAFT polymerization of the macromonomer. The polymer architecture does not influence the concentration dependence of the CP, however, both the CP and T(g) of the comb polymer are lower due to the increased number of hydrophobic end groups
3D printing of optical materials: an investigation of the microscopic properties
3D printing technologies are currently enabling the fabrication of objects
with complex architectures and tailored properties. In such framework, the
production of 3D optical structures, which are typically based on optical
transparent matrices, optionally doped with active molecular compounds and
nanoparticles, is still limited by the poor uniformity of the printed
structures. Both bulk inhomogeneities and surface roughness of the printed
structures can negatively affect the propagation of light in 3D printed optical
components. Here we investigate photopolymerization-based printing processes by
laser confocal microscopy. The experimental method we developed allows the
printing process to be investigated in-situ, with microscale spatial
resolution, and in real-time. The modelling of the photo-polymerization
kinetics allows the different polymerization regimes to be investigated and the
influence of process variables to be rationalized. In addition, the origin of
the factors limiting light propagation in printed materials are rationalized,
with the aim of envisaging effective experimental strategies to improve optical
properties of printed materials.Comment: 8 pages, 3 figure
Novel "green" catalysts for controlled ring-opening polymerization of lactide
Syntéza polylaktidu (PLA) polymerací za otevření kruhu cyklického monomeru (ROP) může být uskutečněna různými způsoby. Literatura uvádí více než 100 katalytických systémů, jejichž pomocí lze polylaktid a jiné biodegradabilní alifatické polyestery získat. Například organokovové katalyzátory na bázi Sn, Zn, Al atd. se po splnění své polymerační funkce stávají kontaminanty a pro humánní implantáty je použití takového materiálu diskutabilní. V současné době jsou v centru výzkumné pozornosti nové N-heterocyklické karbenové katalyzátory. Tyto „metal-free“ katalytické struktury jsou schopné reprodukovatelně řídit syntézu polymerů předem definované molekulové hmotnosti s definovanými koncovými skupinami a nízkou polydisperzitou, která je charakteristická pro živý průběh polymerace. Nabízí se možnost syntézy blokových kopolymerů a různorodých makromolekulárních architektur. Předložená diplomová práce se zabývá studiem polymerace cyklického monomeru D,L-laktidu katalyzované N-heterocyklickým karbenem. Polymerace byly vedeny v přítomnosti benzylalkoholu jako iniciátoru v roztoku THF. Byl sledován vliv složení reakčního systému monomer – iniciátor – katalyzátor. Dále byly připraveny polymery opticky čistého L-laktidu s makroiniciátory PEG s Mn = 1000 a 2000 g/mol. Střední číselná molekulová hmotnost (Mn) a polydisperzita (PDI) byly stanoveny pomocí GPC. Definovatelnost koncových skupin vybraných polymerů byla prokázána pomocí 1H NMR.The synthesis of polylactide (PLA) by ring-opening polymerization (ROP) of cyclic monomer can be realized by different routes. More than 100 catalysts for the synthesis of polylactide and other biodegradable aliphatic polyesters are published in the literature. For example organometallic catalysts based on Sn, Zn, Al etc. after finishing polymerization function became contaminants and using obtained polymer material in human body is controversial. At present, the research is focused on novel N-hererocyclic carbene catalysts. These metal-free catalysts are able to produce polymers with controlled molecular weight, narrow polydispersity, end-group fidelity with high reproducibility as well as to synthesize the block copolymers and complex macromolecular architectures, which is characteristic for living polymerization system. This diploma thesis is focused on study of polymerization of cyclic monomer D,L-lactide catalyzed by N-hererocyclic carbene. Polymerizations were carried out at the presence of benzylalcohol as initiator at THF. We were focused on the influence of composition of reaction system monomer – initiator – catalyst. Polymers of optically pure L-lactide with macroinitiators PEG with Mn of 1000 a 2000 g/mol were prepared as well. Number average molecular weight (Mn) and polydispersity index (PDI) was determined by GPC. 1H NMR was used to prove end-group fidelity.
Towards Hybrid Materials: Group Transfer Polymerization of 3-(Trimethoxylsilyl)propyl Methacrylate
- …
