2 research outputs found

    Finding sequence motifs with Bayesian models incorporating positional information: an application to transcription factor binding sites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biologically active sequence motifs often have positional preferences with respect to a genomic landmark. For example, many known transcription factor binding sites (TFBSs) occur within an interval [-300, 0] bases upstream of a transcription start site (TSS). Although some programs for identifying sequence motifs exploit positional information, most of them model it only implicitly and with <it>ad hoc </it>methods, making them unsuitable for general motif searches.</p> <p>Results</p> <p>A-GLAM, a user-friendly computer program for identifying sequence motifs, now incorporates a Bayesian model systematically combining sequence and positional information. A-GLAM's predictions with and without positional information were compared on two human TFBS datasets, each containing sequences corresponding to the interval [-2000, 0] bases upstream of a known TSS. A rigorous statistical analysis showed that positional information significantly improved the prediction of sequence motifs, and an extensive cross-validation study showed that A-GLAM's model was robust against mild misspecification of its parameters. As expected, when sequences in the datasets were successively truncated to the intervals [-1000, 0], [-500, 0] and [-250, 0], positional information aided motif prediction less and less, but never hurt it significantly.</p> <p>Conclusion</p> <p>Although sequence truncation is a viable strategy when searching for biologically active motifs with a positional preference, a probabilistic model (used reasonably) generally provides a superior and more robust strategy, particularly when the sequence motifs' positional preferences are not well characterized.</p

    Discovering Sequence Motifs with Arbitrary Insertions and Deletions

    Get PDF
    Biology is encoded in molecular sequences: deciphering this encoding remains a grand scientific challenge. Functional regions of DNA, RNA, and protein sequences often exhibit characteristic but subtle motifs; thus, computational discovery of motifs in sequences is a fundamental and much-studied problem. However, most current algorithms do not allow for insertions or deletions (indels) within motifs, and the few that do have other limitations. We present a method, GLAM2 (Gapped Local Alignment of Motifs), for discovering motifs allowing indels in a fully general manner, and a companion method GLAM2SCAN for searching sequence databases using such motifs. glam2 is a generalization of the gapless Gibbs sampling algorithm. It re-discovers variable-width protein motifs from the PROSITE database significantly more accurately than the alternative methods PRATT and SAM-T2K. Furthermore, it usefully refines protein motifs from the ELM database: in some cases, the refined motifs make orders of magnitude fewer overpredictions than the original ELM regular expressions. GLAM2 performs respectably on the BAliBASE multiple alignment benchmark, and may be superior to leading multiple alignment methods for “motif-like” alignments with N- and C-terminal extensions. Finally, we demonstrate the use of GLAM2 to discover protein kinase substrate motifs and a gapped DNA motif for the LIM-only transcriptional regulatory complex: using GLAM2SCAN, we identify promising targets for the latter. GLAM2 is especially promising for short protein motifs, and it should improve our ability to identify the protein cleavage sites, interaction sites, post-translational modification attachment sites, etc., that underlie much of biology. It may be equally useful for arbitrarily gapped motifs in DNA and RNA, although fewer examples of such motifs are known at present. GLAM2 is public domain software, available for download at http://bioinformatics.org.au/glam2
    corecore