21,833 research outputs found

    Relation-changing modal operators

    Get PDF
    We study dynamic modal operators that can change the accessibility relation of a model during the evaluation of a formula. In particular, we extend the basic modal language with modalities that are able to delete, add or swap an edge between pairs of elements of the domain. We define a generic framework to characterize this kind of operations. First, we investigate relation-changing modal logics as fragments of classical logics. Then, we use the new framework to get a suitable notion of bisimulation for the logics introduced, and we investigate their expressive power. Finally, we show that the complexity of the model checking problem for the particular operators introduced is PSpace-complete, and we study two subproblems of model checking: formula complexity and program complexity.Fil: Areces, Carlos Eduardo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fervari, Raul Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hoffmann, Guillaume Emmanuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Automated Reasoning over Deontic Action Logics with Finite Vocabularies

    Full text link
    In this paper we investigate further the tableaux system for a deontic action logic we presented in previous work. This tableaux system uses atoms (of a given boolean algebra of action terms) as labels of formulae, this allows us to embrace parallel execution of actions and action complement, two action operators that may present difficulties in their treatment. One of the restrictions of this logic is that it uses vocabularies with a finite number of actions. In this article we prove that this restriction does not affect the coherence of the deduction system; in other words, we prove that the system is complete with respect to language extension. We also study the computational complexity of this extended deductive framework and we prove that the complexity of this system is in PSPACE, which is an improvement with respect to related systems.Comment: In Proceedings LAFM 2013, arXiv:1401.056

    A Logic for Reasoning about Group Norms

    Get PDF
    We present a number of modal logics to reason about group norms. As a preliminary step, we discuss the ontological status of the group to which the norms are applied, by adapting the classification made by Christian List of collective attitudes into aggregated, common, and corporate attitudes. Accordingly, we shall introduce modality to capture aggregated, common, and corporate group norms. We investigate then the principles for reasoning about those types of modalities. Finally, we discuss the relationship between group norms and types of collective responsibility

    Modal mu-calculi

    Get PDF

    Relation-Changing Logics as Fragments of Hybrid Logics

    Full text link
    Relation-changing modal logics are extensions of the basic modal logic that allow changes to the accessibility relation of a model during the evaluation of a formula. In particular, they are equipped with dynamic modalities that are able to delete, add, and swap edges in the model, both locally and globally. We provide translations from these logics to hybrid logic along with an implementation. In general, these logics are undecidable, but we use our translations to identify decidable fragments. We also compare the expressive power of relation-changing modal logics with hybrid logics.Comment: In Proceedings GandALF 2016, arXiv:1609.0364

    Non-normal modalities in variants of Linear Logic

    Get PDF
    This article presents modal versions of resource-conscious logics. We concentrate on extensions of variants of Linear Logic with one minimal non-normal modality. In earlier work, where we investigated agency in multi-agent systems, we have shown that the results scale up to logics with multiple non-minimal modalities. Here, we start with the language of propositional intuitionistic Linear Logic without the additive disjunction, to which we add a modality. We provide an interpretation of this language on a class of Kripke resource models extended with a neighbourhood function: modal Kripke resource models. We propose a Hilbert-style axiomatization and a Gentzen-style sequent calculus. We show that the proof theories are sound and complete with respect to the class of modal Kripke resource models. We show that the sequent calculus admits cut elimination and that proof-search is in PSPACE. We then show how to extend the results when non-commutative connectives are added to the language. Finally, we put the logical framework to use by instantiating it as logics of agency. In particular, we propose a logic to reason about the resource-sensitive use of artefacts and illustrate it with a variety of examples
    corecore