34,350 research outputs found

    Adding Gradient Noise Improves Learning for Very Deep Networks

    Full text link
    Deep feedforward and recurrent networks have achieved impressive results in many perception and language processing applications. This success is partially attributed to architectural innovations such as convolutional and long short-term memory networks. The main motivation for these architectural innovations is that they capture better domain knowledge, and importantly are easier to optimize than more basic architectures. Recently, more complex architectures such as Neural Turing Machines and Memory Networks have been proposed for tasks including question answering and general computation, creating a new set of optimization challenges. In this paper, we discuss a low-overhead and easy-to-implement technique of adding gradient noise which we find to be surprisingly effective when training these very deep architectures. The technique not only helps to avoid overfitting, but also can result in lower training loss. This method alone allows a fully-connected 20-layer deep network to be trained with standard gradient descent, even starting from a poor initialization. We see consistent improvements for many complex models, including a 72% relative reduction in error rate over a carefully-tuned baseline on a challenging question-answering task, and a doubling of the number of accurate binary multiplication models learned across 7,000 random restarts. We encourage further application of this technique to additional complex modern architectures

    Improving Noise Tolerance of Mixed-Signal Neural Networks

    Full text link
    Mixed-signal hardware accelerators for deep learning achieve orders of magnitude better power efficiency than their digital counterparts. In the ultra-low power consumption regime, limited signal precision inherent to analog computation becomes a challenge. We perform a case study of a 6-layer convolutional neural network running on a mixed-signal accelerator and evaluate its sensitivity to hardware specific noise. We apply various methods to improve noise robustness of the network and demonstrate an effective way to optimize useful signal ranges through adaptive signal clipping. The resulting model is robust enough to achieve 80.2% classification accuracy on CIFAR-10 dataset with just 1.4 mW power budget, while 6 mW budget allows us to achieve 87.1% accuracy, which is within 1% of the software baseline. For comparison, the unoptimized version of the same model achieves only 67.7% accuracy at 1.4 mW and 78.6% at 6 mW.Comment: Accepted for publication in IJCNN 201

    Differentially Private Dropout

    Full text link
    Large data collections required for the training of neural networks often contain sensitive information such as the medical histories of patients, and the privacy of the training data must be preserved. In this paper, we introduce a dropout technique that provides an elegant Bayesian interpretation to dropout, and show that the intrinsic noise added, with the primary goal of regularization, can be exploited to obtain a degree of differential privacy. The iterative nature of training neural networks presents a challenge for privacy-preserving estimation since multiple iterations increase the amount of noise added. We overcome this by using a relaxed notion of differential privacy, called concentrated differential privacy, which provides tighter estimates on the overall privacy loss. We demonstrate the accuracy of our privacy-preserving dropout algorithm on benchmark datasets.Comment: arXiv admin note: text overlap with arXiv:1611.00340 by other author

    Introducing Noise in Decentralized Training of Neural Networks

    Full text link
    It has been shown that injecting noise into the neural network weights during the training process leads to a better generalization of the resulting model. Noise injection in the distributed setup is a straightforward technique and it represents a promising approach to improve the locally trained models. We investigate the effects of noise injection into the neural networks during a decentralized training process. We show both theoretically and empirically that noise injection has no positive effect in expectation on linear models, though. However for non-linear neural networks we empirically show that noise injection substantially improves model quality helping to reach a generalization ability of a local model close to the serial baseline.Comment: 13 page

    Differentially Private Variational Dropout

    Full text link
    Deep neural networks with their large number of parameters are highly flexible learning systems. The high flexibility in such networks brings with some serious problems such as overfitting, and regularization is used to address this problem. A currently popular and effective regularization technique for controlling the overfitting is dropout. Often, large data collections required for neural networks contain sensitive information such as the medical histories of patients, and the privacy of the training data should be protected. In this paper, we modify the recently proposed variational dropout technique which provided an elegant Bayesian interpretation to dropout, and show that the intrinsic noise in the variational dropout can be exploited to obtain a degree of differential privacy. The iterative nature of training neural networks presents a challenge for privacy-preserving estimation since multiple iterations increase the amount of noise added. We overcome this by using a relaxed notion of differential privacy, called concentrated differential privacy, which provides tighter estimates on the overall privacy loss. We demonstrate the accuracy of our privacy-preserving variational dropout algorithm on benchmark datasets.Comment: arXiv admin note: substantial text overlap with arXiv:1712.0166

    CEM-RL: Combining evolutionary and gradient-based methods for policy search

    Full text link
    Deep neuroevolution and deep reinforcement learning (deep RL) algorithms are two popular approaches to policy search. The former is widely applicable and rather stable, but suffers from low sample efficiency. By contrast, the latter is more sample efficient, but the most sample efficient variants are also rather unstable and highly sensitive to hyper-parameter setting. So far, these families of methods have mostly been compared as competing tools. However, an emerging approach consists in combining them so as to get the best of both worlds. Two previously existing combinations use either an ad hoc evolutionary algorithm or a goal exploration process together with the Deep Deterministic Policy Gradient (DDPG) algorithm, a sample efficient off-policy deep RL algorithm. In this paper, we propose a different combination scheme using the simple cross-entropy method (CEM) and Twin Delayed Deep Deterministic policy gradient (td3), another off-policy deep RL algorithm which improves over ddpg. We evaluate the resulting method, cem-rl, on a set of benchmarks classically used in deep RL. We show that cem-rl benefits from several advantages over its competitors and offers a satisfactory trade-off between performance and sample efficiency.Comment: accepted at ICLR 201

    Differentially Private Generative Adversarial Network

    Full text link
    Generative Adversarial Network (GAN) and its variants have recently attracted intensive research interests due to their elegant theoretical foundation and excellent empirical performance as generative models. These tools provide a promising direction in the studies where data availability is limited. One common issue in GANs is that the density of the learned generative distribution could concentrate on the training data points, meaning that they can easily remember training samples due to the high model complexity of deep networks. This becomes a major concern when GANs are applied to private or sensitive data such as patient medical records, and the concentration of distribution may divulge critical patient information. To address this issue, in this paper we propose a differentially private GAN (DPGAN) model, in which we achieve differential privacy in GANs by adding carefully designed noise to gradients during the learning procedure. We provide rigorous proof for the privacy guarantee, as well as comprehensive empirical evidence to support our analysis, where we demonstrate that our method can generate high quality data points at a reasonable privacy level

    Understanding Dropout as an Optimization Trick

    Full text link
    As one of standard approaches to train deep neural networks, dropout has been applied to regularize large models to avoid overfitting, and the improvement in performance by dropout has been explained as avoiding co-adaptation between nodes. However, when correlations between nodes are compared after training the networks with or without dropout, one question arises if co-adaptation avoidance explains the dropout effect completely. In this paper, we propose an additional explanation of why dropout works and propose a new technique to design better activation functions. First, we show that dropout can be explained as an optimization technique to push the input towards the saturation area of nonlinear activation function by accelerating gradient information flowing even in the saturation area in backpropagation. Based on this explanation, we propose a new technique for activation functions, {\em gradient acceleration in activation function (GAAF)}, that accelerates gradients to flow even in the saturation area. Then, input to the activation function can climb onto the saturation area which makes the network more robust because the model converges on a flat region. Experiment results support our explanation of dropout and confirm that the proposed GAAF technique improves image classification performance with expected properties.Comment: 16 page

    Deep Speech 2: End-to-End Speech Recognition in English and Mandarin

    Full text link
    We show that an end-to-end deep learning approach can be used to recognize either English or Mandarin Chinese speech--two vastly different languages. Because it replaces entire pipelines of hand-engineered components with neural networks, end-to-end learning allows us to handle a diverse variety of speech including noisy environments, accents and different languages. Key to our approach is our application of HPC techniques, resulting in a 7x speedup over our previous system. Because of this efficiency, experiments that previously took weeks now run in days. This enables us to iterate more quickly to identify superior architectures and algorithms. As a result, in several cases, our system is competitive with the transcription of human workers when benchmarked on standard datasets. Finally, using a technique called Batch Dispatch with GPUs in the data center, we show that our system can be inexpensively deployed in an online setting, delivering low latency when serving users at scale

    Confidence penalty, annealing Gaussian noise and zoneout for biLSTM-CRF networks for named entity recognition

    Full text link
    Named entity recognition (NER) is used to identify relevant entities in text. A bidirectional LSTM (long short term memory) encoder with a neural conditional random fields (CRF) decoder (biLSTM-CRF) is the state of the art methodology. In this work, we have done an analysis of several methods that intend to optimize the performance of networks based on this architecture, which in some cases encourage overfitting avoidance. These methods target exploration of parameter space, regularization of LSTMs and penalization of confident output distributions. Results show that the optimization methods improve the performance of the biLSTM-CRF NER baseline system, setting a new state of the art performance for the CoNLL-2003 Spanish set with an F1 of 87.18
    • …
    corecore