531 research outputs found

    Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning

    Full text link
    The widely used stochastic gradient methods for minimizing nonconvex composite objective functions require the Lipschitz smoothness of the differentiable part. But the requirement does not hold true for problem classes including quadratic inverse problems and training neural networks. To address this issue, we investigate a family of stochastic Bregman proximal gradient (SBPG) methods, which only require smooth adaptivity of the differentiable part. SBPG replaces the upper quadratic approximation used in SGD with the Bregman proximity measure, resulting in a better approximation model that captures the non-Lipschitz gradients of the nonconvex objective. We formulate the vanilla SBPG and establish its convergence properties under nonconvex setting without finite-sum structure. Experimental results on quadratic inverse problems testify the robustness of SBPG. Moreover, we propose a momentum-based version of SBPG (MSBPG) and prove it has improved convergence properties. We apply MSBPG to the training of deep neural networks with a polynomial kernel function, which ensures the smooth adaptivity of the loss function. Experimental results on representative benchmarks demonstrate the effectiveness and robustness of MSBPG in training neural networks. Since the additional computation cost of MSBPG compared with SGD is negligible in large-scale optimization, MSBPG can potentially be employed as an universal open-source optimizer in the future.Comment: 37 page

    Momentum-based variance reduction in non-convex SGD

    Full text link
    Variance reduction has emerged in recent years as a strong competitor to stochastic gradient descent in non-convex problems, providing the first algorithms to improve upon the converge rate of stochastic gradient descent for finding first-order critical points. However, variance reduction techniques typically require carefully tuned learning rates and willingness to use excessively large ā€œmega-batchesā€ in order to achieve their improved results. We present a new algorithm, Storm, that does not require any batches and makes use of adaptive learning rates, enabling simpler implementation and less hyperparameter tuning. Our technique for removing the batches uses a variant of momentum to achieve variance reduction in non-convex optimization. On smooth losses F, Storm finds a point x with E[kāˆ‡F(x)k] ā‰¤ O(1 /āˆš T + Ļƒ^1/3 /T^1/3) in T iterations with Ļƒ^2 variance in the gradients, matching the optimal rate and without requiring knowledge of Ļƒ.https://arxiv.org/pdf/1905.10018.pdfPublished versio

    Finite-sum optimization: Adaptivity to smoothness and loopless variance reduction

    Full text link
    For finite-sum optimization, variance-reduced gradient methods (VR) compute at each iteration the gradient of a single function (or of a mini-batch), and yet achieve faster convergence than SGD thanks to a carefully crafted lower-variance stochastic gradient estimator that reuses past gradients. Another important line of research of the past decade in continuous optimization is the adaptive algorithms such as AdaGrad, that dynamically adjust the (possibly coordinate-wise) learning rate to past gradients and thereby adapt to the geometry of the objective function. Variants such as RMSprop and Adam demonstrate outstanding practical performance that have contributed to the success of deep learning. In this work, we present AdaVR, which combines the AdaGrad algorithm with variance-reduced gradient estimators such as SAGA or L-SVRG. We assess that AdaVR inherits both good convergence properties from VR methods and the adaptive nature of AdaGrad: in the case of LL-smooth convex functions we establish a gradient complexity of O(n+(L+nL)/Īµ)O(n+(L+\sqrt{nL})/\varepsilon) without prior knowledge of LL. Numerical experiments demonstrate the superiority of AdaVR over state-of-the-art methods. Moreover, we empirically show that the RMSprop and Adam algorithm combined with variance-reduced gradients estimators achieve even faster convergence

    Beyond Worst-Case Analysis in Stochastic Approximation: Moment Estimation Improves Instance Complexity

    Full text link
    We study oracle complexity of gradient based methods for stochastic approximation problems. Though in many settings optimal algorithms and tight lower bounds are known for such problems, these optimal algorithms do not achieve the best performance when used in practice. We address this theory-practice gap by focusing on instance-dependent complexity instead of worst case complexity. In particular, we first summarize known instance-dependent complexity results and categorize them into three levels. We identify the domination relation between different levels and propose a fourth instance-dependent bound that dominates existing ones. We then provide a sufficient condition according to which an adaptive algorithm with moment estimation can achieve the proposed bound without knowledge of noise levels. Our proposed algorithm and its analysis provide a theoretical justification for the success of moment estimation as it achieves improved instance complexity
    • ā€¦
    corecore