2,252 research outputs found

    Subject-centered multi-view feature fusion for neuroimaging retrieval and classification

    Get PDF
    Multi-View neuroimaging retrieval and classification play an important role in computer-aided-diagnosis of brain disorders, as multi-view features could provide more insights of the disease pathology and potentially lead to more accurate diagnosis than single-view features. The large inter-feature and inter-subject variations make the multi-view neuroimaging analysis a challenging task. Many multi-view or multi-modal feature fusion methods have been proposed to reduce the impact of inter-feature variations in neuroimaging data. However, there is not much in-depth work focusing on the inter-subject variations. In this study, we propose a subject-centered multi-view feature fusion method for neuroimaging retrieval and classification based on the propagation graph fusion (PGF) algorithm. Two main advantages of the proposed method are: 1) it evaluates the query online and adaptively reshapes the connections between subjects according to the query; 2) it measures the affinity of the query to the subjects using the subject-centered affinity matrices, which can be easily combined and efficiently solved. Evaluated using a public accessible neuroimaging database, our algorithm outperforms the state-of-the-art methods in retrieval and achieves comparable performance in classification

    Double Self-weighted Multi-view Clustering via Adaptive View Fusion

    Full text link
    Multi-view clustering has been applied in many real-world applications where original data often contain noises. Some graph-based multi-view clustering methods have been proposed to try to reduce the negative influence of noises. However, previous graph-based multi-view clustering methods treat all features equally even if there are redundant features or noises, which is obviously unreasonable. In this paper, we propose a novel multi-view clustering framework Double Self-weighted Multi-view Clustering (DSMC) to overcome the aforementioned deficiency. DSMC performs double self-weighted operations to remove redundant features and noises from each graph, thereby obtaining robust graphs. For the first self-weighted operation, it assigns different weights to different features by introducing an adaptive weight matrix, which can reinforce the role of the important features in the joint representation and make each graph robust. For the second self-weighting operation, it weights different graphs by imposing an adaptive weight factor, which can assign larger weights to more robust graphs. Furthermore, by designing an adaptive multiple graphs fusion, we can fuse the features in the different graphs to integrate these graphs for clustering. Experiments on six real-world datasets demonstrate its advantages over other state-of-the-art multi-view clustering methods

    AMC: Attention guided Multi-modal Correlation Learning for Image Search

    Full text link
    Given a user's query, traditional image search systems rank images according to its relevance to a single modality (e.g., image content or surrounding text). Nowadays, an increasing number of images on the Internet are available with associated meta data in rich modalities (e.g., titles, keywords, tags, etc.), which can be exploited for better similarity measure with queries. In this paper, we leverage visual and textual modalities for image search by learning their correlation with input query. According to the intent of query, attention mechanism can be introduced to adaptively balance the importance of different modalities. We propose a novel Attention guided Multi-modal Correlation (AMC) learning method which consists of a jointly learned hierarchy of intra and inter-attention networks. Conditioned on query's intent, intra-attention networks (i.e., visual intra-attention network and language intra-attention network) attend on informative parts within each modality; a multi-modal inter-attention network promotes the importance of the most query-relevant modalities. In experiments, we evaluate AMC models on the search logs from two real world image search engines and show a significant boost on the ranking of user-clicked images in search results. Additionally, we extend AMC models to caption ranking task on COCO dataset and achieve competitive results compared with recent state-of-the-arts.Comment: CVPR 201

    An Iterative Co-Saliency Framework for RGBD Images

    Full text link
    As a newly emerging and significant topic in computer vision community, co-saliency detection aims at discovering the common salient objects in multiple related images. The existing methods often generate the co-saliency map through a direct forward pipeline which is based on the designed cues or initialization, but lack the refinement-cycle scheme. Moreover, they mainly focus on RGB image and ignore the depth information for RGBD images. In this paper, we propose an iterative RGBD co-saliency framework, which utilizes the existing single saliency maps as the initialization, and generates the final RGBD cosaliency map by using a refinement-cycle model. Three schemes are employed in the proposed RGBD co-saliency framework, which include the addition scheme, deletion scheme, and iteration scheme. The addition scheme is used to highlight the salient regions based on intra-image depth propagation and saliency propagation, while the deletion scheme filters the saliency regions and removes the non-common salient regions based on interimage constraint. The iteration scheme is proposed to obtain more homogeneous and consistent co-saliency map. Furthermore, a novel descriptor, named depth shape prior, is proposed in the addition scheme to introduce the depth information to enhance identification of co-salient objects. The proposed method can effectively exploit any existing 2D saliency model to work well in RGBD co-saliency scenarios. The experiments on two RGBD cosaliency datasets demonstrate the effectiveness of our proposed framework.Comment: 13 pages, 13 figures, Accepted by IEEE Transactions on Cybernetics 2017. Project URL: https://rmcong.github.io/proj_RGBD_cosal_tcyb.htm
    • …
    corecore