30 research outputs found

    Adaptively Secure Multi-Party Computation from LWE (via Equivocal FHE)

    Get PDF
    Adaptively secure Multi-Party Computation (MPC) is an essential and fundamental notion in cryptography. In this work, we construct Universally Composable (UC) MPC protocols that are adaptively secure against all-but-one corruptions based on LWE. Our protocols have a constant number of rounds and communication complexity dependant only on the length of the inputs and outputs (it is independent of the circuit size). Such protocols were only known assuming an honest majority. Protocols in the dishonest majority setting, such as the work of Ishai et al. (CRYPTO 2008), require communication complexity proportional to the circuit size. In addition, constant-round adaptively secure protocols assuming dishonest majority are known to be impossible in the stand-alone setting with black-box proofs of security in the plain model. Here, we solve the problem in the UC setting using a set-up assumption which was shown necessary in order to achieve dishonest majority. The problem of constructing adaptively secure constant-round MPC protocols against arbitrary corruptions is considered a notorious hard problem. A recent line of works based on indistinguishability obfuscation construct such protocols with near-optimal number of rounds against arbitrary corruptions. However, based on standard assumptions, adaptively secure protocols secure against even just all-but-one corruptions with near-optimal number of rounds are not known. However, in this work we provide a three-round solution based only on LWE and NIZK secure against all-but-one corruptions. In addition, Asharov et al. (EUROCRYPT 2012) and more recently Mukherjee and Wichs (ePrint 2015) presented constant-round protocols based on LWE which are secure only in the presence of static adversaries. Assuming NIZK and LWE their static protocols run in two rounds where the latter one is only based on a common random string. Assuming adaptively secure UC NIZK, proposed by Groth et al. (ACM 2012), and LWE as mentioned above our adaptive protocols run in three rounds. Our protocols are constructed based on a special type of cryptosystem we call equivocal FHE from LWE. We also build adaptively secure UC commitments and UC zero-knowledge proofs (of knowledge) from LWE. Moreover, in the decryption phase using an AMD code mechanism we avoid the use of ZK and achieve communication complexity that does not scale with the decryption circuit

    Adaptively Secure MPC with Sublinear Communication Complexity

    Get PDF
    A central challenge in the study of MPC is to balance between security guarantees, hardness assumptions, and resources required for the protocol. In this work, we study the cost of tolerating adaptive corruptions in MPC protocols under various corruption thresholds. In the strongest setting, we consider adaptive corruptions of an arbitrary number of parties (potentially all) and achieve the following results: (1) A two-round secure function evaluation (SFE) protocol in the CRS model, assuming LWE and indistinguishability obfuscation (iO). The communication, the CRS size, and the online-computation are sublinear in the size of the function. The iO assumption can be replaced by secure erasures. Previous results required either the communication or the CRS size to be polynomial in the function size. (2) Under the same assumptions, we construct a Bob-optimized 2PC (where Alice talks first, Bob second, and Alice learns the output). That is, the communication complexity and total computation of Bob are sublinear in the function size and in Alice\u27s input size. We prove impossibility of Alice-optimized protocols. (3) Assuming LWE, we bootstrap adaptively secure NIZK arguments to achieve proof size sublinear in the circuit size of the NP-relation. On a technical level, our results are based on laconic function evaluation (LFE) (Quach, Wee, and Wichs, FOCS\u2718) and shed light on an interesting duality between LFE and FHE. Next, we analyze adaptive corruptions of all-but-one of the parties and show a two-round SFE protocol in the threshold-PKI model (where keys of a threshold FHE scheme are pre-shared among the parties) with communication complexity sublinear in the circuit size, assuming LWE and NIZK. Finally, we consider the honest-majority setting, and show a two-round SFE protocol with guaranteed output delivery under the same constraints. Our results highlight that the asymptotic cost of adaptive security can be reduced to be comparable to, and in many settings almost match, that of static security, with only a little sacrifice to the concrete round complexity and asymptotic communication complexity

    A Survey on Homomorphic Encryption Schemes: Theory and Implementation

    Full text link
    Legacy encryption systems depend on sharing a key (public or private) among the peers involved in exchanging an encrypted message. However, this approach poses privacy concerns. Especially with popular cloud services, the control over the privacy of the sensitive data is lost. Even when the keys are not shared, the encrypted material is shared with a third party that does not necessarily need to access the content. Moreover, untrusted servers, providers, and cloud operators can keep identifying elements of users long after users end the relationship with the services. Indeed, Homomorphic Encryption (HE), a special kind of encryption scheme, can address these concerns as it allows any third party to operate on the encrypted data without decrypting it in advance. Although this extremely useful feature of the HE scheme has been known for over 30 years, the first plausible and achievable Fully Homomorphic Encryption (FHE) scheme, which allows any computable function to perform on the encrypted data, was introduced by Craig Gentry in 2009. Even though this was a major achievement, different implementations so far demonstrated that FHE still needs to be improved significantly to be practical on every platform. First, we present the basics of HE and the details of the well-known Partially Homomorphic Encryption (PHE) and Somewhat Homomorphic Encryption (SWHE), which are important pillars of achieving FHE. Then, the main FHE families, which have become the base for the other follow-up FHE schemes are presented. Furthermore, the implementations and recent improvements in Gentry-type FHE schemes are also surveyed. Finally, further research directions are discussed. This survey is intended to give a clear knowledge and foundation to researchers and practitioners interested in knowing, applying, as well as extending the state of the art HE, PHE, SWHE, and FHE systems.Comment: - Updated. (October 6, 2017) - This paper is an early draft of the survey that is being submitted to ACM CSUR and has been uploaded to arXiv for feedback from stakeholder

    Two-Round Adaptively Secure MPC from Isogenies, LPN, or CDH

    Get PDF
    We present a new framework for building round-optimal (two-round) adaptivelyadaptively secure MPC. We show that a relatively weak notion of OT that we call indistinguishability OT with receiver oblivious sampleabilityindistinguishability \ OT \ with \ receiver \ oblivious \ sampleability (r-iOT) is enough to build two-round, adaptively secure MPC against maliciousmalicious adversaries in the CRS model. We then show how to construct r-iOT from CDH, LPN, or isogeny-based assumptions that can be viewed as group actions (such as CSIDH and CSI-FiSh). This yields the first constructions of two-round adaptively secure MPC against malicious adversaries from CDH, LPN, or isogeny-based assumptions. We further extend our non-isogeny results to the plain model, achieving (to our knowledge) the first construction of two-round adaptively secure MPC against semi-honest adversaries in the plain model from LPN. Our results allow us to build a two-round adaptively secure MPC against malicious adversaries from essentially all of the well-studied assumptions in cryptography. In addition, our constructions from isogenies or LPN provide the first post-quantum alternatives to LWE-based constructions for round-optimal adaptively secure MPC. Along the way, we show that r-iOT also implies non-committing encryption(NCE), thereby yielding the first constructions of NCE from isogenies or LPN

    Secure multi-party protocols under a modern lens

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 263-272).A secure multi-party computation (MPC) protocol for computing a function f allows a group of parties to jointly evaluate f over their private inputs, such that a computationally bounded adversary who corrupts a subset of the parties can not learn anything beyond the inputs of the corrupted parties and the output of the function f. General MPC completeness theorems in the 1980s showed that every efficiently computable function can be evaluated securely in this fashion [Yao86, GMW87, CCD87, BGW88] using the existence of cryptography. In the following decades, progress has been made toward making MPC protocols efficient enough to be deployed in real-world applications. However, recent technological developments have brought with them a slew of new challenges, from new security threats to a question of whether protocols can scale up with the demand of distributed computations on massive data. Before one can make effective use of MPC, these challenges must be addressed. In this thesis, we focus on two lines of research toward this goal: " Protocols resilient to side-channel attacks. We consider a strengthened adversarial model where, in addition to corrupting a subset of parties, the adversary may leak partial information on the secret states of honest parties during the protocol. In presence of such adversary, we first focus on preserving the correctness guarantees of MPC computations. We then proceed to address security guarantees, using cryptography. We provide two results: an MPC protocol whose security provably "degrades gracefully" with the amount of leakage information obtained by the adversary, and a second protocol which provides complete security assuming a (necessary) one-time preprocessing phase during which leakage cannot occur. * Protocols with scalable communication requirements. We devise MPC protocols with communication locality: namely, each party only needs to communicate with a small (polylog) number of dynamically chosen parties. Our techniques use digital signatures and extend particularly well to the case when the function f is a sublinear algorithm whose execution depends on o(n) of the n parties' inputs.by Elette Chantae Boyle.Ph.D

    Exploring Constructions of Compact NIZKs from Various Assumptions

    Get PDF
    A non-interactive zero-knowledge (NIZK) protocol allows a prover to non-interactively convince a verifier of the truth of the statement without leaking any other information. In this study, we explore shorter NIZK proofs for all NP languages. Our primary interest is NIZK proofs from falsifiable pairing/pairing-free group-based assumptions. Thus far, NIZKs in the common reference string model (CRS-NIZKs) for NP based on falsifiable pairing-based assumptions all require a proof size at least as large as O(Ck)O(|C| k), where CC is a circuit computing the NP relation and kk is the security parameter. This holds true even for the weaker designated-verifier NIZKs (DV-NIZKs). Notably, constructing a (CRS, DV)-NIZK with proof size achieving an additive-overhead O(C)+poly(k)O(|C|) + poly(k), rather than a multiplicative-overhead Cpoly(k)|C| \cdot poly(k), based on any falsifiable pairing-based assumptions is an open problem. In this work, we present various techniques for constructing NIZKs with compact proofs, i.e., proofs smaller than O(C)+poly(k)O(|C|) + poly(k), and make progress regarding the above situation. Our result is summarized below. - We construct CRS-NIZK for all NP with proof size C+poly(k)|C| + poly(k) from a (non-static) falsifiable Diffie-Hellman (DH) type assumption over pairing groups. This is the first CRS-NIZK to achieve a compact proof without relying on either lattice-based assumptions or non-falsifiable assumptions. Moreover, a variant of our CRS-NIZK satisfies universal composability (UC) in the erasure-free adaptive setting. Although it is limited to NP relations in NC1, the proof size is wpoly(k)|w| \cdot poly(k) where ww is the witness, and in particular, it matches the state-of-the-art UC-NIZK proposed by Cohen, shelat, and Wichs (EPRINT\u2718) based on lattices. - We construct (multi-theorem) DV-NIZKs for NP with proof size C+poly(k)|C|+poly(k) from the computational DH assumption over pairing-free groups. This is the first DV-NIZK that achieves a compact proof from a standard DH type assumption. Moreover, if we further assume the NP relation to be computable in NC1 and assume hardness of a (non-static) falsifiable DH type assumption over pairing-free groups, the proof size can be made as small as w+poly(k)|w| + poly(k). Another related but independent issue is that all (CRS, DV)-NIZKs require the running time of the prover to be at least Cpoly(k)|C|\cdot poly(k). Considering that there exists NIZKs with efficient verifiers whose running time is strictly smaller than C|C|, it is an interesting problem whether we can construct prover-efficient NIZKs. To this end, we construct prover-efficient CRS-NIZKs for NP with compact proof through a generic construction using laconic functional evaluation schemes (Quach, Wee, and Wichs (FOCS\u2718)). This is the first NIZK in any model where the running time of the prover is strictly smaller than the time it takes to compute the circuit CC computing the NP relation. Finally, perhaps of an independent interest, we formalize the notion of homomorphic equivocal commitments, which we use as building blocks to obtain the first result, and show how to construct them from pairing-based assumptions

    Efficient Fully Homomorphic Encryption Scheme

    Get PDF
    Since Gentry discovered in 2009 the first fully homomorphic encryption scheme, the last few years have witnessed dramatic progress on designing more efficient homomorphic encryption schemes, and some of them have been implemented for applications. The main bottlenecks are in bootstrapping and large cipher expansion (the ratio of the size of ciphertexts to that of messages). Ducas and Micciancio (2015) show that homomorphic computation of one bit operation on LWE ciphers can be done in less than a second, which is then reduced by Chillotti et al. (2016, 2017) to 13ms. This paper presents a compact fully homomorphic encryption scheme that has the following features: (a) its cipher expansion is 6 with private-key encryption and 20 with public-key encryption; (b) all ciphertexts after any number (unbounded) of homomorphic bit operations have the same size and are always valid with the same error size; (c) its security is based on the LWE and RLWE problems (with binary secret keys) and the cost of breaking the scheme by the current approaches is at least 21602^{160} bit operations. The scheme protects function privacy and provides a simple solution for secure two-party computation and zero knowledge proof of any language in NP

    The Exact Round Complexity of Secure Computation

    Get PDF
    We revisit the exact round complexity of secure computation in the multi-party and two-party settings. For the special case of two-parties without a simultaneous message exchange channel, this question has been extensively studied and resolved. In particular, Katz and Ostrovsky (CRYPTO \u2704) proved that 5 rounds are necessary and sufficient for securely realizing every two-party functionality where both parties receive the output. However, the exact round complexity of general multi-party computation, as well as two-party computation with a simultaneous message exchange channel, is not very well understood. These questions are intimately connected to the round complexity of non-malleable commitments. Indeed, the exact relationship between the round complexities of non-malleable commitments and secure multi-party computation has also not been explored. In this work, we revisit these questions and obtain several new results. First, we establish the following main results. Suppose that there exists a k-round non-malleable commitment scheme, and let k\u27 = max(4, k + 1); then, – (Two-party setting with simultaneous message transmission): there exists a k\u27-round protocol for securely realizing every two-party functionality; – (Multi-party setting):there exists a k\u27-round protocol for securely realizing the multi-party coin-flipping functionality. As a corollary of the above results, by instantiating them with existing non-malleable commitment protocols (from the literature), we establish that four rounds are both necessary and sufficient for both the results above. Furthermore, we establish that, for every multi-party functionality five rounds are sufficient. We actually obtain a variety of results offering trade-offs between rounds and the cryptographic assumptions used, depending upon the particular instantiations of underlying protocols

    On Adaptively Secure Multiparty Computation with a Short CRS

    Get PDF
    In the setting of multiparty computation, a set of mutually distrusting parties wish to securely compute a joint function of their private inputs. A protocol is adaptively secure if honest parties might get corrupted \emph{after} the protocol has started. Recently (TCC 2015) three constant-round adaptively secure protocols were presented [CGP15, DKR15, GP15]. All three constructions assume that the parties have access to a \emph{common reference string} (CRS) whose size depends on the function to compute, even when facing semi-honest adversaries. It is unknown whether constant-round adaptively secure protocols exist, without assuming access to such a CRS. In this work, we study adaptively secure protocols which only rely on a short CRS that is independent on the function to compute. First, we raise a subtle issue relating to the usage of \emph{non-interactive non-committing encryption} within security proofs in the UC framework, and explain how to overcome it. We demonstrate the problem in the security proof of the adaptively secure oblivious-transfer protocol from [CLOS02] and provide a complete proof of this protocol. Next, we consider the two-party setting where one of the parties has a polynomial-size input domain, yet the other has no constraints on its input. We show that assuming the existence of adaptively secure oblivious transfer, every deterministic functionality can be computed with adaptive security in a constant number of rounds. Finally, we present a new primitive called \emph{non-committing indistinguishability obfuscation}, and show that this primitive is \emph{complete} for constructing adaptively secure protocols with round complexity independent of the function

    Two-Round MPC: Information-Theoretic and Black-Box

    Get PDF
    We continue the study of protocols for secure multiparty computation (MPC) that require only two rounds of interaction. The recent works of Garg and Srinivasan (Eurocrypt 2018) and Benhamouda and Lin (Eurocrypt 2018) essentially settle the question by showing that such protocols are implied by the minimal assumption that a two-round oblivious transfer (OT) protocol exists. However, these protocols inherently make a non-black-box use of the underlying OT protocol, which results in poor concrete efficiency. Moreover, no analogous result was known in the information-theoretic setting, or alternatively based on one-way functions, given an OT correlations setup or an honest majority. Motivated by these limitations, we study the possibility of obtaining information-theoretic and ``black-box\u27\u27 implementations of two-round MPC protocols. We obtain the following results: - Two-round MPC from OT correlations. Given an OT correlations setup, we get protocols that make a black-box use of a pseudorandom generator (PRG) and are secure against a malicious adversary corrupting an arbitrary number of parties. For a semi-honest adversary, we get similar information-theoretic protocols for branching programs. - New NIOT constructions. Towards realizing OT correlations, we extend the DDH-based non-interactive OT (NIOT) protocol of Bellare and Micali (Crypto \u2789) to the malicious security model, and present new NIOT constructions from the Quadratic Residuosity Assumption (QRA) and the Learning With Errors (LWE) assumption. - Two-round black-box MPC with strong PKI setup. Combining the two previous results, we get two-round MPC protocols that make a black-box use of any DDH-hard or QRA-hard group. The protocols can offer security against a malicious adversary, and require a PKI setup that depends on the number of parties and the size of computation, but not on the inputs or the identities of the participating parties. - Two-round honest-majority MPC from secure channels. Given secure point-to-point channels, we get protocols that make a black-box use of a pseudorandom generator (PRG), as well as information-theoretic protocols for branching programs. These protocols can tolerate a semi-honest adversary corrupting a strict minority of the parties, where in the information-theoretic case the complexity is quasi-polynomial in the number of parties
    corecore