45,060 research outputs found

    Adaptive Protocols for Interactive Communication

    Full text link
    How much adversarial noise can protocols for interactive communication tolerate? This question was examined by Braverman and Rao (IEEE Trans. Inf. Theory, 2014) for the case of "robust" protocols, where each party sends messages only in fixed and predetermined rounds. We consider a new class of non-robust protocols for Interactive Communication, which we call adaptive protocols. Such protocols adapt structurally to the noise induced by the channel in the sense that both the order of speaking, and the length of the protocol may vary depending on observed noise. We define models that capture adaptive protocols and study upper and lower bounds on the permissible noise rate in these models. When the length of the protocol may adaptively change according to the noise, we demonstrate a protocol that tolerates noise rates up to 1/31/3. When the order of speaking may adaptively change as well, we demonstrate a protocol that tolerates noise rates up to 2/32/3. Hence, adaptivity circumvents an impossibility result of 1/41/4 on the fraction of tolerable noise (Braverman and Rao, 2014).Comment: Content is similar to previous version yet with an improved presentatio

    Short Block-length Codes for Ultra-Reliable Low-Latency Communications

    Full text link
    This paper reviews the state of the art channel coding techniques for ultra-reliable low latency communication (URLLC). The stringent requirements of URLLC services, such as ultra-high reliability and low latency, have made it the most challenging feature of the fifth generation (5G) mobile systems. The problem is even more challenging for the services beyond the 5G promise, such as tele-surgery and factory automation, which require latencies less than 1ms and failure rate as low as 10−910^{-9}. The very low latency requirements of URLLC do not allow traditional approaches such as re-transmission to be used to increase the reliability. On the other hand, to guarantee the delay requirements, the block length needs to be small, so conventional channel codes, originally designed and optimised for moderate-to-long block-lengths, show notable deficiencies for short blocks. This paper provides an overview on channel coding techniques for short block lengths and compares them in terms of performance and complexity. Several important research directions are identified and discussed in more detail with several possible solutions.Comment: Accepted for publication in IEEE Communications Magazin

    Green communication via Type-I ARQ: Finite block-length analysis

    Get PDF
    This paper studies the effect of optimal power allocation on the performance of communication systems utilizing automatic repeat request (ARQ). Considering Type-I ARQ, the problem is cast as the minimization of the outage probability subject to an average power constraint. The analysis is based on some recent results on the achievable rates of finite-length codes and we investigate the effect of codewords length on the performance of ARQ-based systems. We show that the performance of ARQ protocols is (almost) insensitive to the length of the codewords, for codewords of length ≄50\ge 50 channel uses. Also, optimal power allocation improves the power efficiency of the ARQ-based systems substantially. For instance, consider a Rayleigh fading channel, codewords of rate 1 nats-per-channel-use and outage probability 10−3.10^{-3}. Then, with a maximum of 2 and 3 transmissions, the implementation of power-adaptive ARQ reduces the average power, compared to the open-loop communication setup, by 17 and 23 dB, respectively, a result which is (almost) independent of the codewords length. Also, optimal power allocation increases the diversity gain of the ARQ protocols considerably.Comment: Accepted for publication in GLOBECOM 201

    Energy and Sampling Constrained Asynchronous Communication

    Full text link
    The minimum energy, and, more generally, the minimum cost, to transmit one bit of information has been recently derived for bursty communication when information is available infrequently at random times at the transmitter. This result assumes that the receiver is always in the listening mode and samples all channel outputs until it makes a decision. If the receiver is constrained to sample only a fraction f>0 of the channel outputs, what is the cost penalty due to sparse output sampling? Remarkably, there is no penalty: regardless of f>0 the asynchronous capacity per unit cost is the same as under full sampling, ie, when f=1. There is not even a penalty in terms of decoding delay---the elapsed time between when information is available until when it is decoded. This latter result relies on the possibility to sample adaptively; the next sample can be chosen as a function of past samples. Under non-adaptive sampling, it is possible to achieve the full sampling asynchronous capacity per unit cost, but the decoding delay gets multiplied by 1/f. Therefore adaptive sampling strategies are of particular interest in the very sparse sampling regime.Comment: Submitted to the IEEE Transactions on Information Theor
    • 

    corecore