3 research outputs found

    Adaptive State-Feedback Stabilization for High-Order Stochastic Nonlinear Systems Driven by Noise of Unknown Covariance

    Get PDF
    This paper further considers more general high-order stochastic nonlinear system driven by noise of unknown covariance and its adaptive state-feedback stabilization problem. A smooth state-feedback controller is designed to guarantee that the origin of the closed-loop system is globally stable in probability

    Nonsmooth Adaptive Control Design for a Large Class of Uncertain High-Order Stochastic Nonlinear Systems

    Get PDF
    This paper investigates the problem of the global stabilization via partial-state feedback and adaptive technique for a class of high-order stochastic nonlinear systems with more uncertainties/unknowns and stochastic zero dynamics. First of all, two stochastic stability concepts are slightly extended to allow the systems with more than one solution. To solve the problem, a lot of substantial technical difficulties should be overcome since the presence of severe uncertainties/unknowns, unmeasurable zero dynamics, and stochastic noise. By introducing the suitable adaptive updated law for an unknown design parameter and appropriate control Lyapunov function, and by using the method of adding a power integrator, an adaptive continuous (nonsmooth) partial-state feedback controller without overparameterization is successfully designed, which guarantees that the closed-loop states are bounded and the original system states eventually converge to zero, both with probability one. A simulation example is provided to illustrate the effectiveness of the proposed approach

    High-Order Stochastic Adaptive Controller Design with Application to Mechanical System

    Get PDF
    The main purpose of this paper is to apply stochastic adaptive controller design to mechanical system. Firstly, by a series of coordinate transformations, the mechanical system can be transformed to a class of special high-order stochastic nonlinear system, based on which, a more general mathematical model is considered, and the smooth state-feedback controller is designed. At last, the simulation for the mechanical system is given to show the effectiveness of the design scheme
    corecore