3,407 research outputs found

    Emergence of Tri-Phasic Muscle Activation from the Non-linear Interactions of Central and Spinal Neural Network Circuits

    Full text link
    The origin of the tri-phasic burst pattern, observed in the EMGs of opponent muscles during rapid self-terminated movements, has been controversial. Here we show by computer simulation that the pattern emerges from interactions between a central neural trajectory controller (VITE circuit) and a peripheral neuromuscularforce controller (FLETE circuit). Both neural models have been derived from simple functional constraints that have led to principled explanations of a wide variety of behavioral and neurobiological data, including, as shown here, the generation of tri-phasic bursts.National Science Foundation (IRI-87-16960); Air Force Office of Scientific Research (URI 90-0175); Defense Advanced Research Projects Agency (AFSOR-90-0083

    Platonic model of mind as an approximation to neurodynamics

    Get PDF
    Hierarchy of approximations involved in simplification of microscopic theories, from sub-cellural to the whole brain level, is presented. A new approximation to neural dynamics is described, leading to a Platonic-like model of mind based on psychological spaces. Objects and events in these spaces correspond to quasi-stable states of brain dynamics and may be interpreted from psychological point of view. Platonic model bridges the gap between neurosciences and psychological sciences. Static and dynamic versions of this model are outlined and Feature Space Mapping, a neurofuzzy realization of the static version of Platonic model, described. Categorization experiments with human subjects are analyzed from the neurodynamical and Platonic model points of view

    Recurrent backpropagation and the dynamical approach to adaptive neural computation

    Get PDF
    Error backpropagation in feedforward neural network models is a popular learning algorithm that has its roots in nonlinear estimation and optimization. It is being used routinely to calculate error gradients in nonlinear systems with hundreds of thousands of parameters. However, the classical architecture for backpropagation has severe restrictions. The extension of backpropagation to networks with recurrent connections will be reviewed. It is now possible to efficiently compute the error gradients for networks that have temporal dynamics, which opens applications to a host of problems in systems identification and control

    Decomposition of Nonlinear Dynamical Systems Using Koopman Gramians

    Full text link
    In this paper we propose a new Koopman operator approach to the decomposition of nonlinear dynamical systems using Koopman Gramians. We introduce the notion of an input-Koopman operator, and show how input-Koopman operators can be used to cast a nonlinear system into the classical state-space form, and identify conditions under which input and state observable functions are well separated. We then extend an existing method of dynamic mode decomposition for learning Koopman operators from data known as deep dynamic mode decomposition to systems with controls or disturbances. We illustrate the accuracy of the method in learning an input-state separable Koopman operator for an example system, even when the underlying system exhibits mixed state-input terms. We next introduce a nonlinear decomposition algorithm, based on Koopman Gramians, that maximizes internal subsystem observability and disturbance rejection from unwanted noise from other subsystems. We derive a relaxation based on Koopman Gramians and multi-way partitioning for the resulting NP-hard decomposition problem. We lastly illustrate the proposed algorithm with the swing dynamics for an IEEE 39-bus system.Comment: 8 pages, submitted to IEEE 2018 AC

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202
    corecore