1,052 research outputs found

    Text Localization in Video Using Multiscale Weber's Local Descriptor

    Full text link
    In this paper, we propose a novel approach for detecting the text present in videos and scene images based on the Multiscale Weber's Local Descriptor (MWLD). Given an input video, the shots are identified and the key frames are extracted based on their spatio-temporal relationship. From each key frame, we detect the local region information using WLD with different radius and neighborhood relationship of pixel values and hence obtained intensity enhanced key frames at multiple scales. These multiscale WLD key frames are merged together and then the horizontal gradients are computed using morphological operations. The obtained results are then binarized and the false positives are eliminated based on geometrical properties. Finally, we employ connected component analysis and morphological dilation operation to determine the text regions that aids in text localization. The experimental results obtained on publicly available standard Hua, Horizontal-1 and Horizontal-2 video dataset illustrate that the proposed method can accurately detect and localize texts of various sizes, fonts and colors in videos.Comment: IEEE SPICES, 201

    From uncertainty to adaptivity : multiscale edge detection and image segmentation

    Get PDF
    This thesis presents the research on two different tasks in computer vision: edge detection and image segmentation (including texture segmentation and motion field segmentation). The central issue of this thesis is the uncertainty of the joint space-frequency image analysis, which motivates the design of the adaptive multiscale/multiresolution schemes for edge detection and image segmentation. Edge detectors capture most of the local features in an image, including the object boundaries and the details of surface textures. Apart from these edge features, the region properties of surface textures and motion fields are also important for segmenting an image into disjoint regions. The major theoretical achievements of this thesis are twofold. First, a scale parameter for the local processing of an image (e.g. edge detection) is proposed. The corresponding edge behaviour in the scale space, referred to as Bounded Diffusion, is the basis of a multiscale edge detector where the scale is adjusted adaptively according to the local noise level. Second, an adaptive multiresolution clustering scheme is proposed for texture segmentation (referred to as Texture Focusing) and motion field segmentation. In this scheme, the central regions of homogeneous textures (motion fields) are analysed using coarse resolutions so as to achieve a better estimation of the textural content (optical flow), and the border region of a texture (motion field) is analysed using fine resolutions so as to achieve a better estimation of the boundary between textures (moving objects). Both of the above two achievements are the logical consequences of the uncertainty principle. Four algorithms, including a roof edge detector, a multiscale step edge detector, a texture segmentation scheme and a motion field segmentation scheme are proposed to address various aspects of edge detection and image segmentation. These algorithms have been implemented and extensively evaluated

    Image interpolation using Shearlet based iterative refinement

    Get PDF
    This paper proposes an image interpolation algorithm exploiting sparse representation for natural images. It involves three main steps: (a) obtaining an initial estimate of the high resolution image using linear methods like FIR filtering, (b) promoting sparsity in a selected dictionary through iterative thresholding, and (c) extracting high frequency information from the approximation to refine the initial estimate. For the sparse modeling, a shearlet dictionary is chosen to yield a multiscale directional representation. The proposed algorithm is compared to several state-of-the-art methods to assess its objective as well as subjective performance. Compared to the cubic spline interpolation method, an average PSNR gain of around 0.8 dB is observed over a dataset of 200 images

    Deep Adaptive Attention for Joint Facial Action Unit Detection and Face Alignment

    Full text link
    Facial action unit (AU) detection and face alignment are two highly correlated tasks since facial landmarks can provide precise AU locations to facilitate the extraction of meaningful local features for AU detection. Most existing AU detection works often treat face alignment as a preprocessing and handle the two tasks independently. In this paper, we propose a novel end-to-end deep learning framework for joint AU detection and face alignment, which has not been explored before. In particular, multi-scale shared features are learned firstly, and high-level features of face alignment are fed into AU detection. Moreover, to extract precise local features, we propose an adaptive attention learning module to refine the attention map of each AU adaptively. Finally, the assembled local features are integrated with face alignment features and global features for AU detection. Experiments on BP4D and DISFA benchmarks demonstrate that our framework significantly outperforms the state-of-the-art methods for AU detection.Comment: This paper has been accepted by ECCV 201
    • …
    corecore