16,310 research outputs found

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Anticipatory Buffer Control and Quality Selection for Wireless Video Streaming

    Full text link
    Video streaming is in high demand by mobile users, as recent studies indicate. In cellular networks, however, the unreliable wireless channel leads to two major problems. Poor channel states degrade video quality and interrupt the playback when a user cannot sufficiently fill its local playout buffer: buffer underruns occur. In contrast to that, good channel conditions cause common greedy buffering schemes to pile up very long buffers. Such over-buffering wastes expensive wireless channel capacity. To keep buffering in balance, we employ a novel approach. Assuming that we can predict data rates, we plan the quality and download time of the video segments ahead. This anticipatory scheduling avoids buffer underruns by downloading a large number of segments before a channel outage occurs, without wasting wireless capacity by excessive buffering. We formalize this approach as an optimization problem and derive practical heuristics for segmented video streaming protocols (e.g., HLS or MPEG DASH). Simulation results and testbed measurements show that our solution essentially eliminates playback interruptions without significantly decreasing video quality
    • …
    corecore