3 research outputs found

    ADAPTIVE SPEECH QUALITY IN VOICE-OVER-IP COMMUNICATIONS

    Get PDF
    The quality of VoIP communication relies significantly on the network that transports the voice packets because this network does not usually guarantee the available bandwidth, delay, and loss that are critical for real-time voice traffic. The solution proposed here is to manage the voice-over-IP stream dynamically, changing parameters as needed to assure quality. The main objective of this dissertation is to develop an adaptive speech encoding system that can be applied to conventional (telephony-grade) and wideband voice communications. This comprehensive study includes the investigation and development of three key components of the system. First, to manage VoIP quality dynamically, a tool is needed to measure real-time changes in quality. The E-model, which exists for narrowband communication, is extended to a single computational technique that measures speech quality for narrowband and wideband VoIP codecs. This part of the dissertation also develops important theoretical work in the area of wideband telephony. The second system component is a variable speech-encoding algorithm. Although VoIP performance is affected by multiple codecs and network-based factors, only three factors can be managed dynamically: voice payload size, speech compression and jitter buffer management. Using an existing adaptive jitter-buffer algorithm, voice packet-size and compression variation are studied as they affect speech quality under different network conditions. This study explains the relationships among multiple parameters as they affect speech transmission and its resulting quality. Then, based on these two components, the third system component is a novel adaptive-rate control algorithm that establishes the interaction between a VoIP sender and receiver, and manages voice quality in real-time. Simulations demonstrate that the system provides better average voice quality than traditional VoIP

    Flow control of real-time unicast multimedia applications in best-effort networks

    Get PDF
    One of the fastest growing segments of Internet applications are real-time mul- timedia applications, like Voice over Internet Protocol (VoIP). Real-time multimedia applications use the User Datagram Protocol (UDP) as the transport protocol because of the inherent conservative nature of the congestion avoidance schemes of Transmis- sion Control Protocol (TCP). The e®ects of uncontrolled °ows on the Internet have not yet been felt because UDP tra±c frequently constitutes only » 20% of the total Internet tra±c. It is pertinent that real-time multimedia applications become better citizens of the Internet, while at the same time deliver acceptable Quality of Service (QoS). Traditionally, packet losses and the increase in the end-to-end delay experienced by some of the packets characterizes congestion in the network. These two signals have been used to develop most known °ow control schemes. The current research considers the °ow accumulation in the network as the signal for use in °ow control. The most signi¯cant contribution of the current research is to propose novel end- to-end °ow control schemes for unicast real-time multimedia °ows transmitting over best-e®ort networks. These control schemes are based on predictive control of the accumulation signal. The end-to-end control schemes available in the literature are based on reactive control that do not take into account the feedback delay existing between the sender and the receiver nor the forward delay in the °ow dynamics. The performance of the proposed control schemes has been evaluated using the ns-2 simulation environment. The research concludes that active control of hard real- time °ows delivers the same or somewhat better QoS as High Bit Rate (HBR, no control), but with a lower average bit rate. Consequently, it helps reduce bandwidth use of controlled real-time °ows by anywhere between 31:43% to 43:96%. Proposed reactive control schemes deliver good QoS. However, they do not scale up as well as the predictive control schemes. Proposed predictive control schemes are e®ective in delivering good quality QoS while using up less bandwidth than even the reactive con- trol schemes. They scale up well as more real-time multimedia °ows start employing them
    corecore