72,576 research outputs found

    Adaptive Radar Detection of Dim Moving Targets in Presence of Range Migration

    Full text link
    This paper addresses adaptive radar detection of dim moving targets. To circumvent range migration, the detection problem is formulated as a multiple hypothesis test and solved applying model order selection rules which allow to estimate the "position" of the target within the CPI and eventually detect it. The performance analysis proves the effectiveness of the proposed approach also in comparison to existing alternatives.Comment: 5 pages, 2 figures, submitted to IEEE Signal Processing Letter

    Advanced Synthetic Aperture Radar Based on Digital Beamforming and Waveform Diversity

    Get PDF
    This paper introduces innovative SAR system concepts for the acquisition of high resolution radar images with wide swath coverage from spaceborne platforms. The new concepts rely on the combination of advanced multi-channel SAR front-end architectures with novel operational modes. The architectures differ regarding their implementation complexity and it is shown that even a low number of channels is already well suited to significantly improve the imaging performance and to overcome fundamental limitations inherent to classical SAR systems. The more advanced concepts employ a multidimensional encoding of the transmitted waveforms to further improve the performance and to enable a new class of hybrid SAR imaging modes that are well suited to satisfy hitherto incompatible user requirements for frequent monitoring and detailed mapping. Implementation specific issues will be discussed and examples demonstrate the potential of the new techniques for different remote sensing applications

    Knowledge-Aided STAP Using Low Rank and Geometry Properties

    Full text link
    This paper presents knowledge-aided space-time adaptive processing (KA-STAP) algorithms that exploit the low-rank dominant clutter and the array geometry properties (LRGP) for airborne radar applications. The core idea is to exploit the fact that the clutter subspace is only determined by the space-time steering vectors, {red}{where the Gram-Schmidt orthogonalization approach is employed to compute the clutter subspace. Specifically, for a side-looking uniformly spaced linear array, the} algorithm firstly selects a group of linearly independent space-time steering vectors using LRGP that can represent the clutter subspace. By performing the Gram-Schmidt orthogonalization procedure, the orthogonal bases of the clutter subspace are obtained, followed by two approaches to compute the STAP filter weights. To overcome the performance degradation caused by the non-ideal effects, a KA-STAP algorithm that combines the covariance matrix taper (CMT) is proposed. For practical applications, a reduced-dimension version of the proposed KA-STAP algorithm is also developed. The simulation results illustrate the effectiveness of our proposed algorithms, and show that the proposed algorithms converge rapidly and provide a SINR improvement over existing methods when using a very small number of snapshots.Comment: 16 figures, 12 pages. IEEE Transactions on Aerospace and Electronic Systems, 201
    • …
    corecore