19,376 research outputs found

    Resource Allocation and Interference Mitigation Techniques for Cooperative Multi-Antenna and Spread Spectrum Wireless Networks

    Full text link
    This chapter presents joint interference suppression and power allocation algorithms for DS-CDMA and MIMO networks with multiple hops and amplify-and-forward and decode-and-forward (DF) protocols. A scheme for joint allocation of power levels across the relays and linear interference suppression is proposed. We also consider another strategy for joint interference suppression and relay selection that maximizes the diversity available in the system. Simulations show that the proposed cross-layer optimization algorithms obtain significant gains in capacity and performance over existing schemes.Comment: 10 figures. arXiv admin note: substantial text overlap with arXiv:1301.009

    Joint Power Adjustment and Interference Mitigation Techniques for Cooperative Spread Spectrum Systems

    Full text link
    This paper presents joint power allocation and interference mitigation techniques for the downlink of spread spectrum systems which employ multiple relays and the amplify and forward cooperation strategy. We propose a joint constrained optimization framework that considers the allocation of power levels across the relays subject to an individual power constraint and the design of linear receivers for interference suppression. We derive constrained minimum mean-squared error (MMSE) expressions for the parameter vectors that determine the optimal power levels across the relays and the linear receivers. In order to solve the proposed optimization problem efficiently, we develop joint adaptive power allocation and interference suppression algorithms that can be implemented in a distributed fashion. The proposed stochastic gradient (SG) and recursive least squares (RLS) algorithms mitigate the interference by adjusting the power levels across the relays and estimating the parameters of the linear receiver. SG and RLS channel estimation algorithms are also derived to determine the coefficients of the channels across the base station, the relays and the destination terminal. The results of simulations show that the proposed techniques obtain significant gains in performance and capacity over non-cooperative systems and cooperative schemes with equal power allocation.Comment: 6 figures. arXiv admin note: text overlap with arXiv:1301.009

    Multi-Antenna Relay Aided Wireless Physical Layer Security

    Full text link
    With growing popularity of mobile Internet, providing secure wireless services has become a critical issue. Physical layer security (PHY-security) has been recognized as an effective means to enhance wireless security by exploiting wireless medium characteristics, e.g., fading, noise, and interference. A particularly interesting PHY-security technology is cooperative relay due to the fact that it helps to provide distributed diversity and shorten access distance. This article offers a tutorial on various multi-antenna relaying technologies to improve security at physical layer. The state of the art research results on multi-antenna relay aided PHY-security as well as some secrecy performance optimization schemes are presented. In particular, we focus on large-scale MIMO (LS-MIMO) relaying technology, which is effective to tackle various challenging issues for implementing wireless PHY-security, such as short-distance interception without eavesdropper channel state information (CSI) and with imperfect legitimate CSI. Moreover, the future directions are identified for further enhancement of secrecy performance.Comment: 17 pages, 4 figures, IEEE Communications Magazine, 201

    Effective Capacity in Wireless Networks: A Comprehensive Survey

    Full text link
    Low latency applications, such as multimedia communications, autonomous vehicles, and Tactile Internet are the emerging applications for next-generation wireless networks, such as 5th generation (5G) mobile networks. Existing physical-layer channel models, however, do not explicitly consider quality-of-service (QoS) aware related parameters under specific delay constraints. To investigate the performance of low-latency applications in future networks, a new mathematical framework is needed. Effective capacity (EC), which is a link-layer channel model with QoS-awareness, can be used to investigate the performance of wireless networks under certain statistical delay constraints. In this paper, we provide a comprehensive survey on existing works, that use the EC model in various wireless networks. We summarize the work related to EC for different networks such as cognitive radio networks (CRNs), cellular networks, relay networks, adhoc networks, and mesh networks. We explore five case studies encompassing EC operation with different design and architectural requirements. We survey various delay-sensitive applications such as voice and video with their EC analysis under certain delay constraints. We finally present the future research directions with open issues covering EC maximization

    Intelligent Wireless Communications Enabled by Cognitive Radio and Machine Learning

    Full text link
    The ability to intelligently utilize resources to meet the need of growing diversity in services and user behavior marks the future of wireless communication systems. Intelligent wireless communications aims at enabling the system to perceive and assess the available resources, to autonomously learn to adapt to the perceived wireless environment, and to reconfigure its operating mode to maximize the utility of the available resources. The perception capability and reconfigurability are the essential features of cognitive radio while modern machine learning techniques project great potential in system adaptation. In this paper, we discuss the development of the cognitive radio technology and machine learning techniques and emphasize their roles in improving spectrum and energy utility of wireless communication systems. We describe the state-of-the-art of relevant techniques, covering spectrum sensing and access approaches and powerful machine learning algorithms that enable spectrum- and energy-efficient communications in dynamic wireless environments. We also present practical applications of these techniques and identify further research challenges in cognitive radio and machine learning as applied to the existing and future wireless communication systems

    Joint Iterative Power Allocation and Linear Interference Suppression Algorithms in Cooperative DS-CDMA Networks

    Full text link
    This work presents joint iterative power allocation and interference suppression algorithms for spread spectrum networks which employ multiple hops and the amplify-and-forward cooperation strategy for both the uplink and the downlink. We propose a joint constrained optimization framework that considers the allocation of power levels across the relays subject to individual and global power constraints and the design of linear receivers for interference suppression. We derive constrained linear minimum mean-squared error (MMSE) expressions for the parameter vectors that determine the optimal power levels across the relays and the linear receivers. In order to solve the proposed optimization problems, we develop cost-effective algorithms for adaptive joint power allocation, and estimation of the parameters of the receiver and the channels. An analysis of the optimization problem is carried out and shows that the problem can have its convexity enforced by an appropriate choice of the power constraint parameter, which allows the algorithms to avoid problems with local minima. A study of the complexity and the requirements for feedback channels of the proposed algorithms is also included for completeness. Simulation results show that the proposed algorithms obtain significant gains in performance and capacity over existing non-cooperative and cooperative schemes.Comment: 9 figures; IET Communications, 201

    Aerial-Terrestrial Communications: Terrestrial Cooperation and Energy-Efficient Transmissions to Aerial-Base Stations

    Full text link
    Hybrid aerial-terrestrial communication networks based on Low Altitude Platforms (LAPs) are expected to optimally meet the urgent communication needs of emergency relief and recovery operations for tackling large scale natural disasters. The energy-efficient operation of such networks is important given the fact that the entire network infrastructure, including the battery operated ground terminals, exhibits requirements to operate under power-constrained situations. In this paper, we discuss the design and evaluation of an adaptive cooperative scheme intended to extend the survivability of the battery operated aerial-terrestrial communication links. We propose and evaluate a real-time adaptive cooperative transmission strategy for dynamic selection between direct and cooperative links based on the channel conditions for improved energy efficiency. We show that the cooperation between mobile terrestrial terminals on the ground could improve the energy efficiency in the uplink depending on the temporal behavior of the terrestrial and the aerial uplink channels. The corresponding delay in having cooperative (relay-based) communications with relay selection is also addressed. The simulation analysis corroborates that the adaptive transmission technique improves the overall energy efficiency of the network whilst maintaining low latency enabling real time applications.Comment: To Appear In IEEE Transactions On Aerospace And Electronic Systems, 201

    Opportunistic Spectrum Sharing in Dynamic Access Networks: Deployment Challenges, Optimizations, Solutions, and Open Issues

    Full text link
    In this paper, we investigate the issue of spectrum assignment in CRNs and examine various opportunistic spectrum access approaches proposed in the literature. We provide insight into the efficiency of such approaches and their ability to attain their design objectives. We discuss the factors that impact the selection of the appropriate operating channel(s), including the important interaction between the cognitive linkquality conditions and the time-varying nature of PRNs. Protocols that consider such interaction are described. We argue that using best quality channels does not achieve the maximum possible throughput in CRNs (does not provide the best spectrum utilization). The impact of guard bands on the design of opportunistic spectrum access protocols is also investigated. Various complementary techniques and optimization methods are underlined and discussed, including the utilization of variablewidth spectrum assignment, resource virtualization, full-duplex capability, cross-layer design, beamforming and MIMO technology, cooperative communication, network coding, discontinuousOFDM technology, and software defined radios. Finally, we highlight several directions for future research in this field

    Adaptive Power Allocation Strategies using DSTC in Cooperative MIMO Networks

    Full text link
    Adaptive Power Allocation (PA) algorithms with different criteria for a cooperative Multiple-Input Multiple-Output (MIMO) network equipped with Distributed Space-Time Coding (DSTC) are proposed and evaluated. Joint constrained optimization algorithms to determine the power allocation parameters, the channel parameters and the receive filter are proposed for each transmitted stream in each link. Linear receive filter and maximum-likelihood (ML) detection are considered with Amplify-and-Forward (AF) and Decode-and-Forward (DF) cooperation strategies. In the proposed algorithms, the elements in the PA matrices are optimized at the destination node and then transmitted back to the relay nodes via a feedback channel. The effects of the feedback errors are considered. Linear MMSE expressions and the PA matrices depend on each other and are updated iteratively. Stochastic gradient (SG) algorithms are developed with reduced computational complexity. Simulation results show that the proposed algorithms obtain significant performance gains as compared to existing power allocation schemes.Comment: 5 figures, 9 pages. IET Communications, 201

    Link Adaptation with Untrusted Relay Assignment: Design and Performance Analysis

    Full text link
    In this paper, a link adaptation and untrusted relay assignment (LAURA) framework for efficient and reliable wireless cooperative communications with physical layer security is proposed. Using sharp channel codes in different transmission modes, reliability for the destination and security in the presence of untrusted relays (low probability of interception) are provided through rate and power allocation. Within this framework, several schemes are designed for highly spectrally efficient link adaptation and relay selection, which involve different levels of complexity and channel state information requirement. Analytical and simulation performance evaluation of the proposed LAURA schemes are provided, which demonstrates the effectiveness of the presented designs. The results indicate that power adaptation at the source plays a critical role in spectral efficiency performance. Also, it is shown that relay selection based on the signal to noise ratio of the source to relays channels provides an interesting balance of performance and complexity within the proposed LAURA framework
    • …
    corecore