118,482 research outputs found
Adaptive Optics for Extremely Large Telescopes
Adaptive Optics has become a key technology for the largest ground-based
telescopes currently under or close to begin of construction. Adaptive optics
is an indispensable component and has basically only one task, that is to
operate the telescope at its maximum angular resolution, without optical
degradations resulting from atmospheric seeing. Based on three decades of
experience using adaptive optics usually as an add-on component, all extremely
large telescopes and their instrumentation are designed for diffraction limited
observations from the very beginning. This review illuminates the various
approaches of the Extremely Large Telescope, the Giant Magellan Telescope, and
the Thirty-Meter Telescope, to fully integrate adaptive optics in their
designs. The article concludes with a brief look into the requirements that
high-contrast imaging poses on adaptive optics.Comment: 29 pages, 13 figures, published in Journal of Astronomical
Instrumentation, November 2, 201
Adaptive Optics for Astronomy
Adaptive Optics is a prime example of how progress in observational astronomy
can be driven by technological developments. At many observatories it is now
considered to be part of a standard instrumentation suite, enabling
ground-based telescopes to reach the diffraction limit and thus providing
spatial resolution superior to that achievable from space with current or
planned satellites. In this review we consider adaptive optics from the
astrophysical perspective. We show that adaptive optics has led to important
advances in our understanding of a multitude of astrophysical processes, and
describe how the requirements from science applications are now driving the
development of the next generation of novel adaptive optics techniques.Comment: to appear in ARA&A vol 50, 201
Simulations of Adaptive Optics with a Laser Guide Star for SINFONI
The SINFONI instrument for ESO's VLT combines integral field spectroscopy and
adaptive optics (AO). We discuss detailed simulations of the adaptive optics
module. These simulations are aimed at assessing the AO module performance,
specifically for operations with extended sources and a laser guide star.
Simulated point spread function (PSF) images will be used to support scientific
preparations and the development of an exposure time calculator, while
simulated wavefront sensor measurements will be used to study PSF
reconstruction methods. We explain how the adaptive optics simulations work,
focusing on the realistic modelling of the laser guide star for a curvature
wavefront sensor. The predicted performance of the AO module is discussed,
resulting in recommendations for the operation of the SINFONI AO module at the
telescope.Comment: 12 pages, 6 figures, to appear in SPIE conference proceedings vol
5490, "Advancements in Adaptive Optics", eds. D. Bonaccini, B.L. Ellerbroek,
R. Ragazonni, Glasgow UK, 21-25 June 200
Atmospheric tomography with separate minimum variance laser and natural guide star mode control
This paper introduces a novel, computationally efficient, and practical atmospheric tomography wavefront control architecture with separate minimum variance laser and natural guide star mode estimation. The architecture is applicable to all laser tomography systems, including multi conjugate adaptive optics (MCAO), laser tomography adaptive optics (LTAO), and multi object adaptive optics (MOAO) systems. Monte Carlo simulation results for the Thirty Meter Telescope (TMT) MCAO system demonstrate its benefit over a previously introduced “ad hoc” split MCAO architecture, calling for further in-depth analysis and simulations over a representative ensemble of natural guide star (NGS) asterisms with optimized loop frame rates and modal gains
Extragalactic Fields Optimized for Adaptive Optics
In this paper we present the coordinates of 67 55' x 55' patches of sky which
have the rare combination of both high stellar surface density (>0.5
arcmin^{-2} with 13<R<16.5 mag) and low extinction (E(B-V)<0.1). These fields
are ideal for adaptive-optics based follow-up of extragalactic targets. One
region of sky, situated near Baade's Window, contains most of the patches we
have identified. Our optimal field, centered at RA: 7h24m3s, Dec: -1deg27'15",
has an additional advantage of being accessible from both hemispheres. We
propose a figure of merit for quantifying real-world adaptive optics
performance, and use this to analyze the performance of multi-conjugate
adaptive optics in these fields. We also compare our results to those that
would be obtained in existing deep fields. In some cases adaptive optics
observations undertaken in the fields given in this paper would be orders of
magnitude more efficient than equivalent observations undertaken in existing
deep fields.Comment: 28 pages, 15 figures, 1 table; accepted for publication in PAS
Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics
The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the sky coverage for the laser guide star multiconjugate adaptive optics system, the Narrow Field Infrared Adaptive Optics System (NFIRAOS), being designed for the Thirty Meter Telescope project. We show that NFIRAOS can achieve more than 70% sky coverage over most of the accessible sky with the requirement of 191 nm total rms wavefront
On-sky results of the adaptive optics MACAO for the new IR-spectrograph CRIRES at VLT
The adaptive optics MACAO has been implemented in 6 focii of the VLT
observatory, in three different flavors. We present in this paper the results
obtained during the commissioning of the last of these units, MACAO-CRIRES.
CRIRES is a high-resolution spectrograph, which efficiency will be improved by
a factor two at least for point-sources observations with a NGS brighter than
R=15. During the commissioning, Strehl exceeding 60% have been observed with
fair seeing conditions, and a general description of the performance of this
curvature adaptive optics system is done.Comment: SPIE conference 2006, Advances in adaptive optics, 12 pages, 11
figure
The numerical simulation tool for the MAORY multiconjugate adaptive optics system
The Multiconjugate Adaptive Optics RelaY (MAORY) is and Adaptive Optics
module to be mounted on the ESO European-Extremely Large Telescope (E-ELT). It
is a hybrid Natural and Laser Guide System that will perform the correction of
the atmospheric turbulence volume above the telescope feeding the Multi-AO
Imaging Camera for Deep Observations Near Infrared spectro-imager (MICADO). We
developed an end-to-end Monte- Carlo adaptive optics simulation tool to
investigate the performance of a the MAORY and the calibration, acquisition,
operation strategies. MAORY will implement Multiconjugate Adaptive Optics
combining Laser Guide Stars (LGS) and Natural Guide Stars (NGS) measurements.
The simulation tool implements the various aspect of the MAORY in an end to end
fashion. The code has been developed using IDL and uses libraries in C++ and
CUDA for efficiency improvements. Here we recall the code architecture, we
describe the modeled instrument components and the control strategies
implemented in the code.Comment: 6 pages, 1 figure, Proceeding 9909 310 of the conference SPIE
Astronomical Telescopes + Instrumentation 2016, 26 June 1 July 2016
Edinburgh, Scotland, U
- …
