5,393 research outputs found

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    QualityAdaptive sharpness enhancement and noise removal of a colour images based on the bilateral filtering

    Get PDF
    In this paper, we present the Adaptive Bilateral Filter (ABF) for sharpness enhancement and noise removal of a colour images. The ABF sharpens an image by increasing the slope of the edges without producing overshoot or undershoot. It is an approach to sharpness enhancement that is fundamentally different from the unsharp mask (USM). This new approach to slope restoration also differs significantly from previous slope restoration algorithms. Compared with an USM based sharpening method, the optimal unsharp mask (OUM), In terms of noise removal, ABF will outperform the bilateral filter and the OUM. ABF works well for both gray images and color images. Due to operation of sharpening of colour images along the edge slope tend to poseterize the image using ABF by pulling up or pulling down the colour images. The proposed method is effective at removing signal noise while enhancing the experimental results in perceptual quality both quantatively and qualitatively

    A Comprehensive Review of Image Restoration and Noise Reduction Techniques

    Get PDF
    Images play a crucial role in modern life and find applications in diverse fields, ranging from preserving memories to conducting scientific research. However, images often suffer from various forms of degradation such as blur, noise, and contrast loss. These degradations make images difficult to interpret, reduce their visual quality, and limit their practical applications. To overcome these challenges, image restoration and noise reduction techniques have been developed to recover degraded images and enhance their quality. These techniques have gained significant importance in recent years, especially with the increasing use of digital imaging in various fields such as medical imaging, surveillance, satellite imaging, and many others. This paper presents a comprehensive review of image restoration and noise reduction techniques, encompassing spatial and frequency domain methods, and deep learning-based techniques. The paper also discusses the evaluation metrics utilized to assess the effectiveness of these techniques and explores future research directions in this field. The primary objective of this paper is to offer a comprehensive understanding of the concepts and methods involved in image restoration and noise reduction
    • …
    corecore