815 research outputs found

    An adaptive neuro-fuzzy inference system for the physiological presentation of seizure disorder

    Get PDF
    Seizure is the clinical manifestation of an excessive, hypersynchronous discharge of a population of cortical neurons accompanied by indescribable "pins- and needles-like” bodily sensations, smells or sounds, fear or depression, hallucinations, momentary jerks or head nods, staring with loss of awareness, and convulsive movements (i.e., involuntary muscle contractions) lasting for some seconds to a few minutes. In this work, an attempt is made to promote a better understanding of seizure disorder by proposing an adaptive neuro-fuzzy simulation model as a tool for capturing the physiological presentation of the disorder. Decision making was performed in two stages, namely the feature extractions using Microsoft Excel for corresponding digital value of the waveform of the EEG recordings of a seizure and those of a non-seizure patient directly from the EEG machine, and the transient features are accurately captured and localized in both time and amplitude. This extracted data were used for our Adaptive Neuro-Fuzzy Inference System (ANFIS) training and the ANFIS was trained with the backpropagation gradient descent method in combination with the least squares method to establish the validity of our ANFIS. The result shows an accuracy of 90.7% of predictions as the number of epochs increase.Keywords: Adaptive Neuro-Fuzzy Inference System, Electroencephalogram, Seizure Disorde

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    Parallel Computing and Neural Networks in Behavioral Modeling

    Get PDF
    Tato disertační práce se zabývá metodami modelování elektronického zařízení letadel. První část je stručným přehledem klasických metod modelování systémů a adaptivních, fuzzy a hybridních metod používaných převážně k black-box modelování. Cílem práce je vytvořit algoritmus pro identifikaci a modelování obecného systému, který může být nelineární, dynamický a velmi složitý, například co do množství rozměrů. Předpokládá se, že model má několik vstupů a výstupů. V hlavní části práce je rozebrána metoda, která patří mezi hybridní systémy, protože kombinuje fuzzy systém s parametricky definovanými pravidly a regresní neuronovou síť. Nejprve je zmíněn základní princip regresní sítě a způsob určení jejího parametru strmosti, dále se kapitola zabývá zavedením fuzzy pravidel do této sítě. Třetí část se zabývá jedním z hlavních bodů práce, paralelními výpočty. Výsledný algoritmus je navržen pro paralelní zpracování, protože výpočetní čas může být v případě složitějších modelů příliš vysoký, případně nelze výsledky získané ze sítě vyhodnotit pomocí výpočtu v jednom vlákně. V závěru práce je metoda ověřena na datech získaných z měření zmenšeného modelu letadla. Ověření je provedeno pomocí střední kvadratické odchylky a srovnáním s odpovídajícím modelem vytvořeným pomocí vícevrstvé neuronové sítě trénované zpětným šířením chyby s algoritmem Levenberg-Marquardt.This thesis is focused on methods for the aircraft equipment modeling. The first part provides a brief overview of classical system modeling approaches used for system description, identification, and modeling. Then adaptive, fuzzy and hybrid methods used mainly for black-box system modeling are introduced. Aim of the thesis is to develop an algorithm for identification and modeling of a general system, which can be nonlinear, dynamic and complex. Multiple inputs and multiple outputs of model are assumed. The main part of the thesis introduces a new method which falls into the hybrid systems. It combines fuzzy approach with parametrically defined rules and general regression neural network. Firstly, the fundamentals of simple general regression neural network and its smoothness parameter determination are presented. Secondly, the general regression neural network with the fuzzy rules is introduced. Third part of the thesis is focused on the parallel computing, one of the main objectives. The final algorithm is designed for the parallel machine, because the computational time can be significantly high and for the larger datasets, the model is not achievable when evaluated in single thread. Block diagram for parallel computing in Matlab and CUDA is provided, as well as the basic structure of CUDA source code. Finally, the method is verified on data obtained from the measurement of a miniaturized aircraft model using the antenna outside the aircraft and the probe inside the fuselage of the aircraft model. The validation of the method is done using mean squared error and compared to mean squared error of corresponding model performed using the multilayer neural network with backpropagation learning and Levenberg-Marquardt algorithm.

    Advanced bioimpedance signal processing techniques for hemodynamic monitoring during anesthesia

    Get PDF
    Aplicat embargament des de la data de defensa fins els maig 2020.Cardiac output (CO) defines the blood flow arriving from the heart to the different organs in the body and it is thus a primary determinant of global 02 transport. Cardiac output has traditionally been measured using invasive methods, whose risk sometimes exceeds the advantages of a cardiac output monitoring. In this context, the minimization of risk in new noninvasive technologies for CO monitoring could translate into major advantages for clinicians, hospitals and patients: ease of usage and availability, reduced recovery time, and improved patient outcome. Impedance Cardiography (ICG) is a promising noninvasive technology for cardiac output monitoring but available information on the ICG signals is more scare than other physiological signals such as the electrocardiogram (ECG). The present Doctoral Thesis contributes to the development of signal treatment techniques for the ICG in order to create an innovative hemodynamic monitor. First, an extensive literature review is provided regarding the basics of the clinical background in which cardiac output monitoring is used and concerning the state of the art of cardiac output monitors on the market. This Doctoral Thesis has produced a considerable amount of clinical data which is also explained in detail. These clinical data are also useful to complement the theoretical explanation of patient indices such as heart rate variability, blood flow and blood pressure. In addition, a new method to create synthetic biomedical signals with known time-frequency characteristics is introduced. One of the first analysis in this Doctoral Thesis studies the time difference between peak points of the heart beats in the ECG and the ICG: the RC segment. This RC segment is a measure of the time delay between electrical and mechanical activity of the heart. The relationship of the RC segment with blood pressure and heart interval is analyzed. The concordance of beat durations of both the electrocardiogram and the impedance cardiogram is one of the key results to develop new artefact detection algorithms and the RC could also have an impact in describing the hemodynamics of a patient. Time-frequency distributions (TFDs) are also used to characterize how the frequency content in impedance cardiography signals change with time. Since TFDs are calculated using concrete kernels, a new method to select the best kernel by using synthetic signals is presented. Optimized TFDs of ICG signals are then calculated to extract severa! features which are used to discriminate between different anesthesia states in patients undergoing surgery. TFD-derived features are also used to describe the whole surgical operations. Relationships between TFD-derived features are analyzed and prediction models for cardiac output are designed. These prediction models prove that the TFD-derived features are related to the patients' cardiac output. Finally, a validation study for the qCO monitor is presented. The qCO monitor has been designed using sorne of the techniques which are consequence of this Doctoral Thesis. The main outputs of this work have been protected with a patent which has already been filed. As a conclusion, this Doctoral Thesis has produced a considerable amount of clinical data and a variety of analysis and processing techniques of impedance cardiography signals which have been included into commercial medical devices already available on the market.El gasto cardíaco (GC) define el flujo de sangre que llega desde el corazón a los distintos órganos del cuerpo y es, por tanto, un determinante primario del transporte global de oxígeno. Se ha medido tradicionalmente usando métodos invasivos cuyos riesgos excedían en ocasiones las ventajas de su monitorización. En este contexto, la minimización del riesgo de la monitorización del gasto cardíaco en nuevas tecnologías no invasivas podría traducirse en mayores ventajas para médicos, hospitales y pacientes: facilidad de uso, disponibilidad del equipamiento y menor tiempo de recuperación y mejores resultados en el paciente. La impedancio-cardiografía o cardiografía de impedancia (ICG} es una prometedora tecnología no invasiva para la monitorización del gasto cardíaco. Sin embargo, la información disponible sobre las señales de ICG es más escasa que otras señales fisiológicas como el electrocardiograma (ECG). La presente Tesis Doctoral contribuye al desarrollo de técnicas de tratamiento de señal de ICG para así crear un monitor hemodinámico innovador. En primer lugar, se proporciona una extensa revisión bibliográfica sobre los aspectos básicos del contexto clínico en el que se utiliza la monitorización del gasto cardíaco así como sobre el estado del arte de los monitores de gasto cardíaco que existen en el mercado. Esta Tesis Doctoral ha producido una considerable cantidad de datos clínicos que también se explican en detalle. Dichos datos clínicos también son útiles para complementar las explicaciones teóricas de los índices de paciente de variabilidad cardíaca y el flujo y la presión sanguíneos. Además, se presenta un nuevo método de creación de señales sintéticas biomédicas con características de tiempo-frecuencia conocidas. Uno de los primeros análisis de esta Tesis Doctoral estudia la diferencia temporal entre los picos de los latidos cardíacos del ECG y del ICG: el segmento RC. Este segmento RC es una medida del retardo temporal entre la actividad eléctrica y mecánica del corazón. Se analiza la relación del segmento RC con la presión arterial y el intervalo cardíaco. La concordancia entre la duración de los latidos del ECG y del ICG es uno de los resultados claves para desarrollar nuevos algoritmos de detección de artefactos y el segmento RC también podría ser relevante en la descripción de la hemodinámica de los pacientes. Las distribuciones de tiempo-frecuencia (TFD, por sus siglas en inglés) se utilizan para caracterizar cómo el contenido de las señales de impedancia cardiográfica cambia con el tiempo. Dado que las TFDs deben calcularse usando núcleos (kernels, en inglés) concretos, se presenta un nuevo método para seleccionar el mejor núcleo mediante el uso de señales sintéticas. Las TFDs de ICG optimizadas se calculan para extraer distintas características que son usadas para discriminar entre los diferentes estados de anestesia en pacientes sometidos a procesos quirúrgicos. Las características derivadas de las distribuciones de tiempo-frecuencia también son utilizadas para describir las operaciones quirúrgicas durante toda su extensión temporal. La relación entre dichas características son analizadas y se proponen distintos modelos de predicción para el gasto cardíaco. Estos modelos de predicción demuestran que las características derivadas de las distribuciones tiempo-frecuencia de señales de ICG están relacionadas con el gasto cardíaco de los pacientes. Finalmente, se presenta un estudio de validación del monitor qCO, diseñado con alguna de las técnicas que son consecuencia de esta Tesis Doctoral. Las principales conclusiones de este trabajo han sido protegidas con una patente que ya ha sido registrada. Como conclusión, esta Tesis Doctoral ha producido una considerable cantidad de datos clínicos y una variedad de técnicas de procesado y análisis de señales de cardiografía de impedancia que han sido incluidas en dispositivos biomédicos disponibles en el mercadoPostprint (published version

    Advanced bioimpedance signal processing techniques for hemodynamic monitoring during anesthesia

    Get PDF
    Cardiac output (CO) defines the blood flow arriving from the heart to the different organs in the body and it is thus a primary determinant of global 02 transport. Cardiac output has traditionally been measured using invasive methods, whose risk sometimes exceeds the advantages of a cardiac output monitoring. In this context, the minimization of risk in new noninvasive technologies for CO monitoring could translate into major advantages for clinicians, hospitals and patients: ease of usage and availability, reduced recovery time, and improved patient outcome. Impedance Cardiography (ICG) is a promising noninvasive technology for cardiac output monitoring but available information on the ICG signals is more scare than other physiological signals such as the electrocardiogram (ECG). The present Doctoral Thesis contributes to the development of signal treatment techniques for the ICG in order to create an innovative hemodynamic monitor. First, an extensive literature review is provided regarding the basics of the clinical background in which cardiac output monitoring is used and concerning the state of the art of cardiac output monitors on the market. This Doctoral Thesis has produced a considerable amount of clinical data which is also explained in detail. These clinical data are also useful to complement the theoretical explanation of patient indices such as heart rate variability, blood flow and blood pressure. In addition, a new method to create synthetic biomedical signals with known time-frequency characteristics is introduced. One of the first analysis in this Doctoral Thesis studies the time difference between peak points of the heart beats in the ECG and the ICG: the RC segment. This RC segment is a measure of the time delay between electrical and mechanical activity of the heart. The relationship of the RC segment with blood pressure and heart interval is analyzed. The concordance of beat durations of both the electrocardiogram and the impedance cardiogram is one of the key results to develop new artefact detection algorithms and the RC could also have an impact in describing the hemodynamics of a patient. Time-frequency distributions (TFDs) are also used to characterize how the frequency content in impedance cardiography signals change with time. Since TFDs are calculated using concrete kernels, a new method to select the best kernel by using synthetic signals is presented. Optimized TFDs of ICG signals are then calculated to extract severa! features which are used to discriminate between different anesthesia states in patients undergoing surgery. TFD-derived features are also used to describe the whole surgical operations. Relationships between TFD-derived features are analyzed and prediction models for cardiac output are designed. These prediction models prove that the TFD-derived features are related to the patients' cardiac output. Finally, a validation study for the qCO monitor is presented. The qCO monitor has been designed using sorne of the techniques which are consequence of this Doctoral Thesis. The main outputs of this work have been protected with a patent which has already been filed. As a conclusion, this Doctoral Thesis has produced a considerable amount of clinical data and a variety of analysis and processing techniques of impedance cardiography signals which have been included into commercial medical devices already available on the market.El gasto cardíaco (GC) define el flujo de sangre que llega desde el corazón a los distintos órganos del cuerpo y es, por tanto, un determinante primario del transporte global de oxígeno. Se ha medido tradicionalmente usando métodos invasivos cuyos riesgos excedían en ocasiones las ventajas de su monitorización. En este contexto, la minimización del riesgo de la monitorización del gasto cardíaco en nuevas tecnologías no invasivas podría traducirse en mayores ventajas para médicos, hospitales y pacientes: facilidad de uso, disponibilidad del equipamiento y menor tiempo de recuperación y mejores resultados en el paciente. La impedancio-cardiografía o cardiografía de impedancia (ICG} es una prometedora tecnología no invasiva para la monitorización del gasto cardíaco. Sin embargo, la información disponible sobre las señales de ICG es más escasa que otras señales fisiológicas como el electrocardiograma (ECG). La presente Tesis Doctoral contribuye al desarrollo de técnicas de tratamiento de señal de ICG para así crear un monitor hemodinámico innovador. En primer lugar, se proporciona una extensa revisión bibliográfica sobre los aspectos básicos del contexto clínico en el que se utiliza la monitorización del gasto cardíaco así como sobre el estado del arte de los monitores de gasto cardíaco que existen en el mercado. Esta Tesis Doctoral ha producido una considerable cantidad de datos clínicos que también se explican en detalle. Dichos datos clínicos también son útiles para complementar las explicaciones teóricas de los índices de paciente de variabilidad cardíaca y el flujo y la presión sanguíneos. Además, se presenta un nuevo método de creación de señales sintéticas biomédicas con características de tiempo-frecuencia conocidas. Uno de los primeros análisis de esta Tesis Doctoral estudia la diferencia temporal entre los picos de los latidos cardíacos del ECG y del ICG: el segmento RC. Este segmento RC es una medida del retardo temporal entre la actividad eléctrica y mecánica del corazón. Se analiza la relación del segmento RC con la presión arterial y el intervalo cardíaco. La concordancia entre la duración de los latidos del ECG y del ICG es uno de los resultados claves para desarrollar nuevos algoritmos de detección de artefactos y el segmento RC también podría ser relevante en la descripción de la hemodinámica de los pacientes. Las distribuciones de tiempo-frecuencia (TFD, por sus siglas en inglés) se utilizan para caracterizar cómo el contenido de las señales de impedancia cardiográfica cambia con el tiempo. Dado que las TFDs deben calcularse usando núcleos (kernels, en inglés) concretos, se presenta un nuevo método para seleccionar el mejor núcleo mediante el uso de señales sintéticas. Las TFDs de ICG optimizadas se calculan para extraer distintas características que son usadas para discriminar entre los diferentes estados de anestesia en pacientes sometidos a procesos quirúrgicos. Las características derivadas de las distribuciones de tiempo-frecuencia también son utilizadas para describir las operaciones quirúrgicas durante toda su extensión temporal. La relación entre dichas características son analizadas y se proponen distintos modelos de predicción para el gasto cardíaco. Estos modelos de predicción demuestran que las características derivadas de las distribuciones tiempo-frecuencia de señales de ICG están relacionadas con el gasto cardíaco de los pacientes. Finalmente, se presenta un estudio de validación del monitor qCO, diseñado con alguna de las técnicas que son consecuencia de esta Tesis Doctoral. Las principales conclusiones de este trabajo han sido protegidas con una patente que ya ha sido registrada. Como conclusión, esta Tesis Doctoral ha producido una considerable cantidad de datos clínicos y una variedad de técnicas de procesado y análisis de señales de cardiografía de impedancia que han sido incluidas en dispositivos biomédicos disponibles en el mercad

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 261)

    Get PDF
    This bibliography lists 281 reports, articles and other documents introduced into the NASA scientific and technical information system in July 1984

    On the development of intelligent medical systems for pre-operative anaesthesia assessment

    Get PDF
    This thesis describes the research and development of a decision support tool for determining a medical patient's suitability for surgical anaesthesia. At present, there is a change in the way that patients are clinically assessedp rior to surgery. The pre-operative assessment, usually conducted by a qualified anaesthetist, is being more frequently performed by nursing grade staff. The pre-operative assessmenet xists to minimise the risk of surgical complications for the patient. Nursing grade staff are often not as experienced as qualified anaesthetists, and thus are not as well suited to the role of performing the pre-operative assessment. This research project used data collected during pre-operative assessments to develop a decision support tool that would assist the nurse (or anaesthetist) in determining whether a patient is suitable for surgical anaesthesia. The three main objectives are: firstly, to research and develop an automated intelligent systems technique for classifying heart and lung sounds and hence identifying cardio-respiratory pathology. Secondly, to research and develop an automated intelligent systems technique for assessing the patient's blood oxygen level and pulse waveform. Finally, to develop a decision support tool that would combine the assessmentsa bove in forming a decision as to whether the patient is suitable for surgical anaesthesia. Clinical data were collected from hospital outpatient departments and recorded alongside the diagnoses made by a qualified anaesthetist. Heart and lung sounds were collected using an electronic stethoscope. Using this data two ensembles of artificial neural networks were trained to classify the different heart and lung sounds into different pathology groups. Classification accuracies up to 99.77% for the heart sounds, and 100% for the lung sounds has been obtained. Oxygen saturation and pulse waveform measurements were recorded using a pulse oximeter. Using this data an artificial neural network was trained to discriminate between normal and abnormal pulse waveforms. A discrimination accuracy of 98% has been obtained from the system. A fuzzy inference system was generated to classify the patient's blood oxygen level as being either an inhibiting or non-inhibiting factor in their suitability for surgical anaesthesia. When tested the system successfully classified 100% of the test dataset. A decision support tool, applying the genetic programming evolutionary technique to a fuzzy classification system was created. The decision support tool combined the results from the heart sound, lung sound and pulse oximetry classifiers in determining whether a patient was suitable for surgical anaesthesia. The evolved fuzzy system attained a classification accuracy of 91.79%. The principal conclusion from this thesis is that intelligent systems, such as artificial neural networks, genetic programming, and fuzzy inference systems, can be successfully applied to the creation of medical decision support tools.EThOS - Electronic Theses Online ServiceMedicdirect.co.uk Ltd.GBUnited Kingdo
    corecore