3 research outputs found

    Adaptive Stabilization of Stochastic Nonlinear Systems Disturbed by Unknown Time Delay and Covariance Noise

    Get PDF
    This paper considers a more general stochastic nonlinear time-delay system driven by unknown covariance noise and investigates its adaptive state-feedback control problem. As a remarkable feature, the growth assumptions imposed on delay-dependent nonlinear terms are removed. Then, with the help of Lyapunov-Krasovskii functionals and adaptive backstepping technique, an adaptive state-feedback controller is constructed by overcoming the negative effects brought by unknown time delay and covariance noise. Based on the designed controller, the closed-loop system can be guaranteed to be globally asymptotically stable (GAS) in probability. Finally, a simulation example demonstrates the effectiveness of the proposed scheme

    Adaptive NN State-Feedback Control for Stochastic High-Order Nonlinear Systems with Time-Varying Control Direction and Delays

    Get PDF
    Nussbaum-type gain function and neural network (NN) approximation approaches are extended to investigate the adaptive statefeedback stabilization problem for a class of stochastic high-order nonlinear time-delay systems. The distinct features of this paper are listed as follows. Firstly, the power order condition is completely removed; the restrictions on system nonlinearities and time-varying control direction are greatly weakened. Then, based on Lyapunov-Krasovskii function and dynamic surface control technique, an adaptive NN controller is constructed to render the closed-loop system semiglobally uniformly ultimately bounded (SGUUB). Finally, a simulation example is shown to demonstrate the effectiveness of the proposed control scheme
    corecore