27,509 research outputs found

    Epidemic spreading on preferred degree adaptive networks

    Get PDF
    We study the standard SIS model of epidemic spreading on networks where individuals have a fluctuating number of connections around a preferred degree κ\kappa . Using very simple rules for forming such preferred degree networks, we find some unusual statistical properties not found in familiar Erd\H{o}s-R\'{e}nyi or scale free networks. By letting κ\kappa depend on the fraction of infected individuals, we model the behavioral changes in response to how the extent of the epidemic is perceived. In our models, the behavioral adaptations can be either `blind' or `selective' -- depending on whether a node adapts by cutting or adding links to randomly chosen partners or selectively, based on the state of the partner. For a frozen preferred network, we find that the infection threshold follows the heterogeneous mean field result λc/μ=/\lambda_{c}/\mu =/ and the phase diagram matches the predictions of the annealed adjacency matrix (AAM) approach. With `blind' adaptations, although the epidemic threshold remains unchanged, the infection level is substantially affected, depending on the details of the adaptation. The `selective' adaptive SIS models are most interesting. Both the threshold and the level of infection changes, controlled not only by how the adaptations are implemented but also how often the nodes cut/add links (compared to the time scales of the epidemic spreading). A simple mean field theory is presented for the selective adaptations which capture the qualitative and some of the quantitative features of the infection phase diagram.Comment: 21 pages, 7 figure

    Mitigating Epidemics through Mobile Micro-measures

    Full text link
    Epidemics of infectious diseases are among the largest threats to the quality of life and the economic and social well-being of developing countries. The arsenal of measures against such epidemics is well-established, but costly and insufficient to mitigate their impact. In this paper, we argue that mobile technology adds a powerful weapon to this arsenal, because (a) mobile devices endow us with the unprecedented ability to measure and model the detailed behavioral patterns of the affected population, and (b) they enable the delivery of personalized behavioral recommendations to individuals in real time. We combine these two ideas and propose several strategies to generate such recommendations from mobility patterns. The goal of each strategy is a large reduction in infections, with a small impact on the normal course of daily life. We evaluate these strategies over the Orange D4D dataset and show the benefit of mobile micro-measures, even if only a fraction of the population participates. These preliminary results demonstrate the potential of mobile technology to complement other measures like vaccination and quarantines against disease epidemics.Comment: Presented at NetMob 2013, Bosto

    INDEMICS: An Interactive High-Performance Computing Framework for Data Intensive Epidemic Modeling

    Get PDF
    We describe the design and prototype implementation of Indemics (_Interactive; Epi_demic; _Simulation;)—a modeling environment utilizing high-performance computing technologies for supporting complex epidemic simulations. Indemics can support policy analysts and epidemiologists interested in planning and control of pandemics. Indemics goes beyond traditional epidemic simulations by providing a simple and powerful way to represent and analyze policy-based as well as individual-based adaptive interventions. Users can also stop the simulation at any point, assess the state of the simulated system, and add additional interventions. Indemics is available to end-users via a web-based interface. Detailed performance analysis shows that Indemics greatly enhances the capability and productivity of simulating complex intervention strategies with a marginal decrease in performance. We also demonstrate how Indemics was applied in some real case studies where complex interventions were implemented

    Epidemic processes in complex networks

    Get PDF
    In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.Comment: 62 pages, 15 figures, final versio

    The role of caretakers in disease dynamics

    Full text link
    One of the key challenges in modeling the dynamics of contagion phenomena is to understand how the structure of social interactions shapes the time course of a disease. Complex network theory has provided significant advances in this context. However, awareness of an epidemic in a population typically yields behavioral changes that correspond to changes in the network structure on which the disease evolves. This feedback mechanism has not been investigated in depth. For example, one would intuitively expect susceptible individuals to avoid other infecteds. However, doctors treating patients or parents tending sick children may also increase the amount of contact made with an infecteds, in an effort to speed up recovery but also exposing themselves to higher risks of infection. We study the role of these caretaker links in an adaptive network models where individuals react to a disease by increasing or decreasing the amount of contact they make with infected individuals. We find that pure avoidance, with only few caretaker links, is the best strategy for curtailing an SIS disease in networks that possess a large topological variability. In more homogeneous networks, disease prevalence is decreased for low concentrations of caretakers whereas a high prevalence emerges if caretaker concentration passes a well defined critical value.Comment: 8 pages, 9 figure
    corecore