2 research outputs found

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Adaptive multi-channel spectrum sensing throughput tradeoff

    No full text
    In this paper, the throughput tradeoff in adaptive multi-channel spectrum sensing procedure is studied. Considering the total sensing-transmission time constraint, we design the optimal sampling resource allocation scheme to maximize the throughput of secondary users while keeping a pre-defined overall miss detection probability for each channel. Through the multi-stage exploration of potential holes, the limited sampling budget can be focused on more promising spectrum segment to detect the sparsely located holes. Simulation results show that significant gains in the throughput of the secondary users are achieved through jointly optimizing the resource allocation factor and number of iterations in channel exploration.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000319218100052&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Engineering, Electrical & ElectronicTelecommunicationsEICPCI-S(ISTP)
    corecore