1,960 research outputs found

    A Survey on the Evolution of Stream Processing Systems

    Full text link
    Stream processing has been an active research field for more than 20 years, but it is now witnessing its prime time due to recent successful efforts by the research community and numerous worldwide open-source communities. This survey provides a comprehensive overview of fundamental aspects of stream processing systems and their evolution in the functional areas of out-of-order data management, state management, fault tolerance, high availability, load management, elasticity, and reconfiguration. We review noteworthy past research findings, outline the similarities and differences between early ('00-'10) and modern ('11-'18) streaming systems, and discuss recent trends and open problems.Comment: 34 pages, 15 figures, 5 table

    Advances in Modelling and Control of Wind and Hydrogenerators

    Get PDF
    Rapid deployment of wind and solar energy generation is going to result in a series of new problems with regards to the reliability of our electrical grid in terms of outages, cost, and life-time, forcing us to promptly deal with the challenging restructuring of our energy systems. Increased penetration of fluctuating renewable energy resources is a challenge for the electrical grid. Proposing solutions to deal with this problem also impacts the functionality of large generators. The power electronic generator interactions, multi-domain modelling, and reliable monitoring systems are examples of new challenges in this field. This book presents some new modelling methods and technologies for renewable energy generators including wind, ocean, and hydropower systems

    Advances in Modelling and Control of Wind and Hydrogenerators

    Get PDF
    Rapid deployment of wind and solar energy generation is going to result in a series of new problems with regards to the reliability of our electrical grid in terms of outages, cost, and life-time, forcing us to promptly deal with the challenging restructuring of our energy systems. Increased penetration of fluctuating renewable energy resources is a challenge for the electrical grid. Proposing solutions to deal with this problem also impacts the functionality of large generators. The power electronic generator interactions, multi-domain modelling, and reliable monitoring systems are examples of new challenges in this field. This book presents some new modelling methods and technologies for renewable energy generators including wind, ocean, and hydropower systems

    Real-Time Analysis of an Active Distribution Network - Coordinated Frequency Control for Islanding Operation

    Get PDF

    Elastic-PPQ: A two-level autonomic system for spatial preference query processing over dynamic data streams

    Get PDF
    Paradigms like Internet of Things and the most recent Internet of Everything are shifting the attention towards systems able to process unbounded sequences of items in the form of data streams. In the real world, data streams may be highly variable, exhibiting burstiness in the arrival rate and non-stationarities such as trends and cyclic behaviors. Furthermore, input items may be not ordered according to timestamps. This raises the complexity of stream processing systems, which must support elastic resource management and autonomic QoS control through sophisticated strategies and run-time mechanisms. In this paper we present Elastic-PPQ, a system for processing spatial preference queries over dynamic data streams. The key aspect of the system design is the existence of two adaptation levels handling workload variations at different time-scales. To address fast time-scale variations we design a fine regulatory mechanism of load balancing supported by a control-theoretic approach. The logic of the second adaptation level, targeting slower time-scale variations, is incorporated in a Fuzzy Logic Controller that makes scale in/out decisions of the system parallelism degree. The approach has been successfully evaluated under synthetic and real-world datasets

    Secure Data Management and Transmission Infrastructure for the Future Smart Grid

    Get PDF
    Power grid has played a crucial role since its inception in the Industrial Age. It has evolved from a wide network supplying energy for incorporated multiple areas to the largest cyber-physical system. Its security and reliability are crucial to any country’s economy and stability [1]. With the emergence of the new technologies and the growing pressure of the global warming, the aging power grid can no longer meet the requirements of the modern industry, which leads to the proposal of ‘smart grid’. In smart grid, both electricity and control information communicate in a massively distributed power network. It is essential for smart grid to deliver real-time data by communication network. By using smart meter, AMI can measure energy consumption, monitor loads, collect data and forward information to collectors. Smart grid is an intelligent network consists of many technologies in not only power but also information, telecommunications and control. The most famous structure of smart grid is the three-layer structure. It divides smart grid into three different layers, each layer has its own duty. All these three layers work together, providing us a smart grid that monitor and optimize the operations of all functional units from power generation to all the end-customers [2]. To enhance the security level of future smart grid, deploying a high secure level data transmission scheme on critical nodes is an effective and practical approach. A critical node is a communication node in a cyber-physical network which can be developed to meet certain requirements. It also has firewalls and capability of intrusion detection, so it is useful for a time-critical network system, in other words, it is suitable for future smart grid. The deployment of such a scheme can be tricky regarding to different network topologies. A simple and general way is to install it on every node in the network, that is to say all nodes in this network are critical nodes, but this way takes time, energy and money. Obviously, it is not the best way to do so. Thus, we propose a multi-objective evolutionary algorithm for the searching of critical nodes. A new scheme should be proposed for smart grid. Also, an optimal planning in power grid for embedding large system can effectively ensure every power station and substation to operate safely and detect anomalies in time. Using such a new method is a reliable method to meet increasing security challenges. The evolutionary frame helps in getting optimum without calculating the gradient of the objective function. In the meanwhile, a means of decomposition is useful for exploring solutions evenly in decision space. Furthermore, constraints handling technologies can place critical nodes on optimal locations so as to enhance system security even with several constraints of limited resources and/or hardware. The high-quality experimental results have validated the efficiency and applicability of the proposed approach. It has good reason to believe that the new algorithm has a promising space over the real-world multi-objective optimization problems extracted from power grid security domain. In this thesis, a cloud-based information infrastructure is proposed to deal with the big data storage and computation problems for the future smart grid, some challenges and limitations are addressed, and a new secure data management and transmission strategy regarding increasing security challenges of future smart grid are given as well

    Secure Data Management and Transmission Infrastructure for the Future Smart Grid

    Get PDF
    Power grid has played a crucial role since its inception in the Industrial Age. It has evolved from a wide network supplying energy for incorporated multiple areas to the largest cyber-physical system. Its security and reliability are crucial to any country’s economy and stability [1]. With the emergence of the new technologies and the growing pressure of the global warming, the aging power grid can no longer meet the requirements of the modern industry, which leads to the proposal of ‘smart grid’. In smart grid, both electricity and control information communicate in a massively distributed power network. It is essential for smart grid to deliver real-time data by communication network. By using smart meter, AMI can measure energy consumption, monitor loads, collect data and forward information to collectors. Smart grid is an intelligent network consists of many technologies in not only power but also information, telecommunications and control. The most famous structure of smart grid is the three-layer structure. It divides smart grid into three different layers, each layer has its own duty. All these three layers work together, providing us a smart grid that monitor and optimize the operations of all functional units from power generation to all the end-customers [2]. To enhance the security level of future smart grid, deploying a high secure level data transmission scheme on critical nodes is an effective and practical approach. A critical node is a communication node in a cyber-physical network which can be developed to meet certain requirements. It also has firewalls and capability of intrusion detection, so it is useful for a time-critical network system, in other words, it is suitable for future smart grid. The deployment of such a scheme can be tricky regarding to different network topologies. A simple and general way is to install it on every node in the network, that is to say all nodes in this network are critical nodes, but this way takes time, energy and money. Obviously, it is not the best way to do so. Thus, we propose a multi-objective evolutionary algorithm for the searching of critical nodes. A new scheme should be proposed for smart grid. Also, an optimal planning in power grid for embedding large system can effectively ensure every power station and substation to operate safely and detect anomalies in time. Using such a new method is a reliable method to meet increasing security challenges. The evolutionary frame helps in getting optimum without calculating the gradient of the objective function. In the meanwhile, a means of decomposition is useful for exploring solutions evenly in decision space. Furthermore, constraints handling technologies can place critical nodes on optimal locations so as to enhance system security even with several constraints of limited resources and/or hardware. The high-quality experimental results have validated the efficiency and applicability of the proposed approach. It has good reason to believe that the new algorithm has a promising space over the real-world multi-objective optimization problems extracted from power grid security domain. In this thesis, a cloud-based information infrastructure is proposed to deal with the big data storage and computation problems for the future smart grid, some challenges and limitations are addressed, and a new secure data management and transmission strategy regarding increasing security challenges of future smart grid are given as well

    Adaptive scheme for improvement of load factor of water heater loads in residential buildings

    Get PDF
    The South African power utility, Eskom, and, in turn, the metropolitan and local municipalities, have difficulty meeting the country's growing demand for electricity. In this study, electric water heaters have been identified as the appliances consuming the most energy in residential buildings. There are periods when the demand for electricity is very high across the power system, specifically in the mornings and evenings during winter from May to August, when consumers’ need for electricity, for lighting, cooking, and heating water, peaks. Methods are constantly being sought to assist Eskom and municipalities with network constraints and overloading during periods of high demand, as well as to assist consumers in reducing their electricity costs. Overloading the power system can result in power outages and blackouts and damage to equipment. These challenges can be prevented by introducing load management systems, also known as Demand Side Management, to balance the supply of electricity on the network. This is a method of controlling the load to meet the demand, thereby reducing peak loads, and maintaining and protecting power system stability. Constant upgrading of power plants and primary and secondary substations is needed to meet the growing peak demand, but, alongside this, measures to save electricity must constantly be explored. This dissertation examines ripple control as a load management tool to shift the energy demand of electric water heaters in residential buildings from periods of high demand for electricity to off-peak periods. Ripple control enables the power utility to switch off the electric water heaters of a group of consumers simultaneously, to prevent high demand during peak hours overloading the power system. This could assist municipalities with network constraints and provide considerable savings to the consumer. This method has been successfully used throughout South Africa by Eskom and municipalities. A dynamic of control load model of ripple controller was used in this research, to obtain real-time load measurements on the consumption pattern of electric water heaters. The Rietvlei substation is supplied with 400 kV from Eskom transmission lines and stepped down to 132 kV. Data to measure the load was collected from the City of Tshwane Municipality’s Eskom meter connected inside the Rietvlei substation. The ripple control v telegram was injected into the medium voltage busbars in the substation and propagated down to the low voltage networks throughout the distribution area, where receivers picked up the signal and switched loads or tariffs, as indicated in the study conducted. The results confirmed the effectiveness of the ripple controller for load shifting and load factor improvement during high peak demand. A capacity test indicated that Centurion has 8 000 receivers to operate. Based on 8 000 receivers, the annual saving on the municipality’s Eskom account is over R 11 592 000 per year at today’s tariff. This provides evidence that the application of such a system is essential. The prime objective of a Load Control scheme is to do energy shifting and avoid demand peaks.Electrical and Mining Engineerin
    • …
    corecore