33 research outputs found

    Coefficient-Robust A Posteriori Error Estimation for H(curl)-elliptic Problems

    Full text link
    We extend the framework of a posteriori error estimation by preconditioning in [Li, Y., Zikatanov, L.: Computers \& Mathematics with Applications. \textbf{91}, 192-201 (2021)] and derive new a posteriori error estimates for H(curl)-elliptic two-phase interface problems. The proposed error estimator provides two-sided bounds for the discretization error and is robust with respect to coefficient variation under mild assumptions. For H(curl) problems with constant coefficients, the performance of this estimator is numerically compared with the one analyzed in [Sch\"oberl, J.: Math.~Comp. \textbf{77}(262), 633-649 (2008)]

    Improved ZZ A Posteriori Error Estimators for Diffusion Problems: Conforming Linear Elements

    Get PDF
    In \cite{CaZh:09}, we introduced and analyzed an improved Zienkiewicz-Zhu (ZZ) estimator for the conforming linear finite element approximation to elliptic interface problems. The estimator is based on the piecewise "constant" flux recovery in the H(div;Ω)H(div;\Omega) conforming finite element space. This paper extends the results of \cite{CaZh:09} to diffusion problems with full diffusion tensor and to the flux recovery both in piecewise constant and piecewise linear H(div)H(div) space.Comment: arXiv admin note: substantial text overlap with arXiv:1407.437

    A Computational Study of the Weak Galerkin Method for Second-Order Elliptic Equations

    Full text link
    The weak Galerkin finite element method is a novel numerical method that was first proposed and analyzed by Wang and Ye for general second order elliptic problems on triangular meshes. The goal of this paper is to conduct a computational investigation for the weak Galerkin method for various model problems with more general finite element partitions. The numerical results confirm the theory established by Wang and Ye. The results also indicate that the weak Galerkin method is efficient, robust, and reliable in scientific computing.Comment: 19 page

    Localized bases for finite dimensional homogenization approximations with non-separated scales and high-contrast

    Get PDF
    We construct finite-dimensional approximations of solution spaces of divergence form operators with LL^\infty-coefficients. Our method does not rely on concepts of ergodicity or scale-separation, but on the property that the solution space of these operators is compactly embedded in H1H^1 if source terms are in the unit ball of L2L^2 instead of the unit ball of H1H^{-1}. Approximation spaces are generated by solving elliptic PDEs on localized sub-domains with source terms corresponding to approximation bases for H2H^2. The H1H^1-error estimates show that O(hd)\mathcal{O}(h^{-d})-dimensional spaces with basis elements localized to sub-domains of diameter O(hαln1h)\mathcal{O}(h^\alpha \ln \frac{1}{h}) (with α[1/2,1)\alpha \in [1/2,1)) result in an O(h22α)\mathcal{O}(h^{2-2\alpha}) accuracy for elliptic, parabolic and hyperbolic problems. For high-contrast media, the accuracy of the method is preserved provided that localized sub-domains contain buffer zones of width O(hαln1h)\mathcal{O}(h^\alpha \ln \frac{1}{h}) where the contrast of the medium remains bounded. The proposed method can naturally be generalized to vectorial equations (such as elasto-dynamics).Comment: Accepted for publication in SIAM MM
    corecore