2 research outputs found

    An Adaptive Fault-Tolerant Sliding Mode Control Allocation Scheme for Multirotor Helicopter Subject to Simultaneous Actuator Faults

    Get PDF
    This paper proposes a novel adaptive sliding mode based control allocation scheme for accommodating simultaneous actuator faults. The proposed control scheme includes two separate control modules with virtual control part and control allocation part, respectively. As a lowlevel control module, the control allocation/re-allocation scheme is used to distribute/redistribute virtual control signals among the available actuators under fault-free or faulty cases, respectively. In the case of simultaneous actuator faults, the control allocation and re-allocation module may fail to meet the required virtual control signal which will degrade the overall system stability. The proposed online adaptive scheme can seamlessly adjust the control gains for the high-level sliding mode control module and reconfigure the distribution of control signals to eliminate the effect of the virtual control error and maintain stability of the closed-loop system. In addition, with the help of the boundary layer for constructing the adaptation law, the overestimation of control gains is avoided, and the adaptation ceases once the sliding variable is within the boundary layer. A significant feature of this study is that the stability of the closed-loop system is guaranteed theoretically in the presence of simultaneous actuator faults. The effectiveness of the proposed control scheme is demonstrated by experimental results based on a modified unmanned multirotor helicopter under both single and simultaneous actuator faults conditions with comparison to a conventional sliding mode controller and a linear quadratic regulator scheme

    Adaptive fault-tolerant control with control allocation for flight systems with severe actuator failures and input saturation

    No full text
    This paper proposes a novel adaptive fault tolerant control strategy for flight systems which have no sufficient actuator redundancy after severe actuator failures. In addition to distributing the control signals to the remaining actuators based on the effectiveness of actuators, this strategy utilizes model reference adaptive control (MRAC) to compensate for the tracking error caused by severe failures. Furthermore, an improved weighting algorithm and an anti-saturation controller are developed to compensate for the saturation error. Finally, a simulation of the satellite launch vehicle is conducted to demonstrate the effectiveness of the proposed strategy. Compared to the traditional fault tolerant control with control allocation method, the proposed strategy gives better performance.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000327210205055&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Automation & Control SystemsEngineering, Electrical & ElectronicEICPCI-S(ISTP)
    corecore