61,316 research outputs found

    Systems approaches and algorithms for discovery of combinatorial therapies

    Full text link
    Effective therapy of complex diseases requires control of highly non-linear complex networks that remain incompletely characterized. In particular, drug intervention can be seen as control of signaling in cellular networks. Identification of control parameters presents an extreme challenge due to the combinatorial explosion of control possibilities in combination therapy and to the incomplete knowledge of the systems biology of cells. In this review paper we describe the main current and proposed approaches to the design of combinatorial therapies, including the empirical methods used now by clinicians and alternative approaches suggested recently by several authors. New approaches for designing combinations arising from systems biology are described. We discuss in special detail the design of algorithms that identify optimal control parameters in cellular networks based on a quantitative characterization of control landscapes, maximizing utilization of incomplete knowledge of the state and structure of intracellular networks. The use of new technology for high-throughput measurements is key to these new approaches to combination therapy and essential for the characterization of control landscapes and implementation of the algorithms. Combinatorial optimization in medical therapy is also compared with the combinatorial optimization of engineering and materials science and similarities and differences are delineated.Comment: 25 page

    Improved Network Performance via Antagonism: From Synthetic Rescues to Multi-drug Combinations

    Get PDF
    Recent research shows that a faulty or sub-optimally operating metabolic network can often be rescued by the targeted removal of enzyme-coding genes--the exact opposite of what traditional gene therapy would suggest. Predictions go as far as to assert that certain gene knockouts can restore the growth of otherwise nonviable gene-deficient cells. Many questions follow from this discovery: What are the underlying mechanisms? How generalizable is this effect? What are the potential applications? Here, I will approach these questions from the perspective of compensatory perturbations on networks. Relations will be drawn between such synthetic rescues and naturally occurring cascades of reaction inactivation, as well as their analogues in physical and other biological networks. I will specially discuss how rescue interactions can lead to the rational design of antagonistic drug combinations that select against resistance and how they can illuminate medical research on cancer, antibiotics, and metabolic diseases.Comment: Online Open "Problems and Paradigms" articl

    Time-programmable drug dosing allows the manipulation, suppression and reversal of antibiotic drug resistance in vitro

    Get PDF
    Multi-drug strategies have been attempted to prolong the efficacy of existing antibiotics, but with limited success. Here we show that the evolution of multi-drug-resistant Escherichia coli can be manipulated in vitro by administering pairs of antibiotics and switching between them in ON/OFF manner. Using a multiplexed cell culture system, we find that switching between certain combinations of antibiotics completely suppresses the development of resistance to one of the antibiotics. Using this data, we develop a simple deterministic model, which allows us to predict the fate of multi-drug evolution in this system. Furthermore, we are able to reverse established drug resistance based on the model prediction by modulating antibiotic selection stresses. Our results support the idea that the development of antibiotic resistance may be potentially controlled via continuous switching of drugs

    Customizing the therapeutic response of signaling networks to promote antitumor responses by drug combinations

    Get PDF
    Drug resistance, de novo and acquired, pervades cellular signaling networks (SNs) from one signaling motif to another as a result of cancer progression and/or drug intervention. This resistance is one of the key determinants of efficacy in targeted anti-cancer drug therapy. Although poorly understood, drug resistance is already being addressed in combination therapy by selecting drug targets where SN sensitivity increases due to combination components or as a result of de novo or acquired mutations. Additionally, successive drug combinations have shown low resistance potential. To promote a rational, systematic development of combination therapies, it is necessary to establish the underlying mechanisms that drive the advantages of combination therapies, and design methods to determine drug targets for combination regimens. Based on a joint systems analysis of cellular SN response and its sensitivity to drug action and oncogenic mutations, we describe an in silico method to analyze the targets of drug combinations. Our method explores mechanisms of sensitizing the SN through a combination of two drugs targeting vertical signaling pathways. We propose a paradigm of SN response customization by one drug to both maximize the effect of another drug in combination and promote a robust therapeutic response against oncogenic mutations. The method was applied to customize the response of the ErbB/PI3K/PTEN/AKT pathway by combination of drugs targeting HER2 receptors and proteins in the down-stream pathway. The results of a computational experiment showed that the modification of the SN response from hyperbolic to smooth sigmoid response by manipulation of two drugs in combination leads to greater robustness in therapeutic response against oncogenic mutations determining cancer heterogeneity. The application of this method in drug combination co-development suggests a combined evaluation of inhibition effects together with the capability of drug combinations to suppress resistance mechanisms before they become clinically manifest

    A signaling visualization toolkit to support rational design of combination therapies and biomarker discovery: SiViT

    Get PDF
    Targeted cancer therapy aims to disrupt aberrant cellular signalling pathways. Biomarkers are surrogates of pathway state, but there is limited success in translating candidate biomarkers to clinical practice due to the intrinsic complexity of pathway networks. Systems biology approaches afford better understanding of complex, dynamical interactions in signalling pathways targeted by anticancer drugs. However, adoption of dynamical modelling by clinicians and biologists is impeded by model inaccessibility. Drawing on computer games technology, we present a novel visualisation toolkit, SiViT, that converts systems biology models of cancer cell signalling into interactive simulations that can be used without specialist computational expertise. SiViT allows clinicians and biologists to directly introduce for example loss of function mutations and specific inhibitors. SiViT animates the effects of these introductions on pathway dynamics, suggesting further experiments and assessing candidate biomarker effectiveness. In a systems biology model of Her2 signalling we experimentally validated predictions using SiViT, revealing the dynamics of biomarkers of drug resistance and highlighting the role of pathway crosstalk. No model is ever complete: the iteration of real data and simulation facilitates continued evolution of more accurate, useful models. SiViT will make accessible libraries of models to support preclinical research, combinatorial strategy design and biomarker discovery

    Optimal designs for active controlled dose finding trials with efficacy-toxicity outcomes

    Get PDF
    Nonlinear regression models addressing both efficacy and toxicity outcomes are increasingly used in dose-finding trials, such as in pharmaceutical drug development. However, research on related experimental design problems for corresponding active controlled trials is still scarce. In this paper we derive optimal designs to estimate efficacy and toxicity in an active controlled clinical dose finding trial when the bivariate continuous outcomes are modeled either by polynomials up to degree 2, the Michaelis- Menten model, the Emax model, or a combination thereof. We determine upper bounds on the number of different doses levels required for the optimal design and provide conditions under which the boundary points of the design space are included in the optimal design. We also provide an analytical description of the minimally supported DD-optimal designs and show that they do not depend on the correlation between the bivariate outcomes. We illustrate the proposed methods with numerical examples and demonstrate the advantages of the DD-optimal design for a trial, which has recently been considered in the literature.Comment: Keywords and Phrases: Active controlled trials, dose finding, optimal design, admissible design, Emax model, Equivalence theorem, Particle swarm optimization, Tchebycheff syste

    Drug resistance and treatment failure in leishmaniasis: A 21st century challenge

    Get PDF
    Reevaluation of treatment guidelines for Old and New World leishmaniasis is urgently needed on a global basis because treatment failure is an increasing problem. Drug resistance is a fundamental determinant of treatment failure, although other factors also contribute to this phenomenon, including the global HIV/AIDS epidemic with its accompanying impact on the immune system. Pentavalent antimonials have been used successfully worldwide for the treatment of leishmaniasis since the first half of the 20th century, but the last 10 to 20 years have witnessed an increase in clinical resistance, e.g., in North Bihar in India. In this review, we discuss the meaning of “resistance” related to leishmaniasis and discuss its molecular epidemiology, particularly for Leishmania donovani that causes visceral leishmaniasis. We also discuss how resistance can affect drug combination therapies. Molecular mechanisms known to contribute to resistance to antimonials, amphotericin B, and miltefosine are also outlined
    corecore