1,202 research outputs found

    Performance of adaptive bayesian equalizers in outdoor environments

    Get PDF
    Outdoor communications are affected by multipath propagation that imposes an upper limit on the system data rate and restricts possible applications. In order to overcome the degrading effect introduced by the channel, conventional equalizers implemented with digital filters have been traditionally used. A new approach based on neural networks is considered. In particular, the behavior of the adaptive Bayesian equalizer implemented by means of radial basis functions applied to the channel equalization of radio outdoor environments has been analyzed. The method used to train the equalizer coefficients is based on a channel response estimation. We compare the results obtained with three channel estimation methods: the least sum of square errors (LSSE) channel estimation algorithm, recursive least square (RLS) algorithm employed only to obtain one channel estimation and, finally, the RLS algorithm used to estimate the channel every decided symbol for the whole frame.Peer ReviewedPostprint (published version

    Symmetric complex-valued RBF receiver for multiple-antenna aided wireless systems

    No full text
    A nonlinear beamforming assisted detector is proposed for multiple-antenna-aided wireless systems employing complex-valued quadrature phase shift-keying modulation. By exploiting the inherent symmetry of the optimal Bayesian detection solution, a novel complex-valued symmetric radial basis function (SRBF)-network-based detector is developed, which is capable of approaching the optimal Bayesian performance using channel-impaired training data. In the uplink case, adaptive nonlinear beamforming can be efficiently implemented by estimating the system’s channel matrix based on the least squares channel estimate. Adaptive implementation of nonlinear beamforming in the downlink case by contrast is much more challenging, and we adopt a cluster-variationenhanced clustering algorithm to directly identify the SRBF center vectors required for realizing the optimal Bayesian detector. A simulation example is included to demonstrate the achievable performance improvement by the proposed adaptive nonlinear beamforming solution over the theoretical linear minimum bit error rate beamforming benchmark

    Revisiting Multi-Step Nonlinearity Compensation with Machine Learning

    Get PDF
    For the efficient compensation of fiber nonlinearity, one of the guiding principles appears to be: fewer steps are better and more efficient. We challenge this assumption and show that carefully designed multi-step approaches can lead to better performance-complexity trade-offs than their few-step counterparts.Comment: 4 pages, 3 figures, This is a preprint of a paper submitted to the 2019 European Conference on Optical Communicatio

    Recursive backpropagation algorithm applied to a globally recurrent neural network

    Full text link
    In general, recursive neural networks can yield a smaller structure than purely feedforward neural network in the same way infinite impulse response (IIR) filters can replace longer finite impulse response (FIR) filters. This thesis presents a new adaptive algorithm that trains recursive neural networks. This algorithm is based on least mean square (LMS) algorithms designed for other adaptive architectures. This algorithm overcomes several of the limitations of current recursive neural network algorithms, such as epoch training and the requirement for large amounts of memory storage; To demonstrate this new algorithm, adaptive architectures constructed with a recursive neural network and trained with the new algorithm are applied to the four adaptive systems and the results are compared to adaptive systems constructed with other adaptive filters. In these examples, this new algorithm shows the ability to perform linear and nonlinear transformations and, in some cases, significantly outperforms the other adaptive filters. This thesis also discusses the possible avenues for future exploration of adaptive systems constructed of recursive neural networks

    Bit error performance of diffuse indoor optical wireless channel pulse position modulation system employing artificial neural networks for channel equalisation

    Get PDF
    The bit-error rate (BER) performance of a pulse position modulation (PPM) scheme for non-line-of-sight indoor optical links employing channel equalisation based on the artificial neural network (ANN) is reported. Channel equalisation is achieved by training a multilayer perceptrons ANN. A comparative study of the unequalised `soft' decision decoding and the `hard' decision decoding along with the neural equalised `soft' decision decoding is presented for different bit resolutions for optical channels with different delay spread. We show that the unequalised `hard' decision decoding performs the worst for all values of normalised delayed spread, becoming impractical beyond a normalised delayed spread of 0.6. However, `soft' decision decoding with/without equalisation displays relatively improved performance for all values of the delay spread. The study shows that for a highly diffuse channel, the signal-to-noise ratio requirement to achieve a BER of 10ñˆ’5 for the ANN-based equaliser is ~10 dB lower compared with the unequalised `soft' decoding for 16-PPM at a data rate of 155 Mbps. Our results indicate that for all range of delay spread, neural network equalisation is an effective tool of mitigating the inter-symbol interference
    • 

    corecore