409 research outputs found

    Boundary Control of Coupled Reaction-Advection-Diffusion Systems with Spatially-Varying Coefficients

    Full text link
    Recently, the problem of boundary stabilization for unstable linear constant-coefficient coupled reaction-diffusion systems was solved by means of the backstepping method. The extension of this result to systems with advection terms and spatially-varying coefficients is challenging due to complex boundary conditions that appear in the equations verified by the control kernels. In this paper we address this issue by showing that these equations are essentially equivalent to those verified by the control kernels for first-order hyperbolic coupled systems, which were recently found to be well-posed. The result therefore applies in this case, allowing us to prove H^1 stability for the closed-loop system. It also shows an interesting connection between backstepping kernels for coupled parabolic and hyperbolic problems.Comment: Submitted to IEEE Transactions on Automatic Contro

    Control of Homodirectional and General Heterodirectional Linear Coupled Hyperbolic PDEs

    Full text link
    Research on stabilization of coupled hyperbolic PDEs has been dominated by the focus on pairs of counter-convecting ("heterodirectional") transport PDEs with distributed local coupling and with controls at one or both boundaries. A recent extension allows stabilization using only one control for a system containing an arbitrary number of coupled transport PDEs that convect at different speeds against the direction of the PDE whose boundary is actuated. In this paper we present a solution to the fully general case, in which the number of PDEs in either direction is arbitrary, and where actuation is applied on only one boundary (to all the PDEs that convect downstream from that boundary). To solve this general problem, we solve, as a special case, the problem of control of coupled "homodirectional" hyperbolic linear PDEs, where multiple transport PDEs convect in the same direction with arbitrary local coupling. Our approach is based on PDE backstepping and yields solutions to stabilization, by both full-state and observer-based output feedback, trajectory planning, and trajectory tracking problems

    Feedback control of bilinear distributed parameter system by input-output linearization

    Get PDF
    International audienceIn this paper, a control law that enforces the tracking of a boundary controlled output for a bilinear distributed parameter system is developed in the framework of geometric control. The dynamic behavior of the system is described by two weakly coupled linear hyperbolic partial differential equations. The stability of the resulting closed-loop system is investigated based on eigenvalues of the spatial operator of a weakly coupled system of balance equations. It is shown that, under some reasonable assumptions, the stability condition is related to the choice of the tuning parameter of the control law. The performance of the developed control law is demonstrated, through numerical simulation, in the case of a co-current heat exchanger. The control objective is to control the outlet cold fluid temperature by manipulating its velocity. Both tracking and disturbance rejection problems are considered

    Robust stabilization of 2×22 \times 2 first-order hyperbolic PDEs with uncertain input delay

    Full text link
    A backstepping-based compensator design is developed for a system of 2×22\times2 first-order linear hyperbolic partial differential equations (PDE) in the presence of an uncertain long input delay at boundary. We introduce a transport PDE to represent the delayed input, which leads to three coupled first-order hyperbolic PDEs. A novel backstepping transformation, composed of two Volterra transformations and an affine Volterra transformation, is introduced for the predictive control design. The resulting kernel equations from the affine Volterra transformation are two coupled first-order PDEs and each with two boundary conditions, which brings challenges to the well-posedness analysis. We solve the challenge by using the method of characteristics and the successive approximation. To analyze the sensitivity of the closed-loop system to uncertain input delay, we introduce a neutral system which captures the control effect resulted from the delay uncertainty. It is proved that the proposed control is robust to small delay variations. Numerical examples illustrate the performance of the proposed compensator
    corecore