2,478 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Condition Monitoring of a Belt-Based Transmission System for Comau Racer3 Robots

    Get PDF
    This project has been developed in collaboration with Comau Robotics S.p.a and the main goal is the development in China of an Health Monitoring Pro-cess using vibration analysis. This project is connected to the activity of Cost Reduction carried out by the PD Cost Engineering Department in China. The Project is divided in two part: 1. Data Acquisition 2. Data Analysis An Automatic Acquisition of the moni.log file is carried out and is discussed in Chapter 1. As for the Data Analysis is concerned a data driven approach is considered and developed in frequency domain through the FFT transform and in time domain using the Wavelet transform. In Chapter 2 a list of the techiques used nowadays for the Signal Analysis and the Vibration Monitoring is shown in time domain, frequency domain and time-frequency domain. In Chapter 3 the state of art of the Condition Monitoring of all the possible ma-chinery part is carried out from the evaluation of the spectrum of the current and speed. In Chapter 4 are evaluated disturbances that are not related to a fault but be-long to a normal behaviour of the system acting on the measured forces. Motor Torque Ripple and Output Noise Resolution are disturbance dependent on ve-locity and are mentioned in comparison to the one related to the configuration of the Robot. In Chapter 5 a particular study case is assigned: the noise problem due to belt-based power transmission system of the axis three of a Racer 3 Robot in Endu-rance test. The chapter presents the test plan done including all the simula-tions. In Chapter 6 all the results are shown demostrating how the vibration analysis carried out from an external sensor can be confirmed looking at the spectral content of the speed and the current. In the last Chapter the final conclusions and a possible development of this thesis are presented considering both a a Model of Signal and a Model Based approach

    A novel fault diagnosis technique for enhancing maintenance and reliability of rotating machines

    Get PDF
    Equipment standardisation as a cost-effective means of rationalising maintenance spares has significantly increased the existence of several identical (similar components and configurations) ‘as installed’ machines in most industrial sites. However, the dynamic behaviours of such identical machines usually differ due to variations in their foundation flexibilities, which is perhaps why separate analysis is often required for each machine during fault diagnosis. In practice, the fault diagnosis process is even further complicated by the fact that analysis is often conducted at individual measurement locations for different speeds, since a significant number of rotating machines operate at various speeds. Hence, through the experimental simulation of a similar practical scenario of two identically configured ‘as installed’ rotating machines with different foundation flexibilities, this study proposes a simplified vibration-based fault diagnosis technique that may be valuable for fault detection irrespective of foundation flexibilities or operating speeds. On both experimental rigs with different foundation flexibilities, several common rotor-related faults were independently simulated. Data combination method was then used for computing composite higher order spectra (composite bispectrum and composite trispectrum), after which principal component analysis is used for fault separation and diagnosis of the grouped data. Hence, this article highlights the usefulness of the proposed fault diagnosis approach for enhancing the reliability of identical ‘as installed’ rotating machines, irrespective of the rotating speeds and foundation flexibilities. </jats:p

    Modulation signal bispectrum analysis of electric signals for the detection and diagnosis of compound faults in induction motors with sensorless drives

    Get PDF
    As a prime driver, induction motor is the most electric energy consuming component in industry. The exposure of the motor to stator winding asymmetry, combined with broken rotor bar fault significantly increases the temperature and reduces the efficiency and life of the motor. Accurate and timely diagnosis of these faults will help to maintain motors operating under optimal status and avoid excessive energy consumption and severe damages to systems. This paper examines the performance of diagnosing the effect of asymmetry stator winding on broken rotor bar (BRB) faults under closed loop operation modes. It examines the effectiveness of conventional diagnostic features in both motor current and voltage signals using spectrum and modulation signal bispectrum analysis (MSBA). Evaluation results show that the combined faults cause an additional increase in the sideband amplitude and this increase in sideband can be observed in both the current and voltage signals under the sensorless control mode. MSB analysis has a good noise reduction capability and produces a more accurate and reliable diagnosis in that it gives a more correct indication of the fault severity and its location for all operating conditions

    A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems

    Get PDF
    Small-scale rotorcraft unmanned robotic systems (SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years (2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem, trends, and challenges are described from three aspects. Conclusions of the paper are presented, and the future of SRURSs is discussed to enable further research interests

    Scour influence on the fatigue life of operational monopile-supported offshore wind turbines

    Get PDF
    Offshore wind turbines supported on monopiles are an important source for renewable energy. Their fatigue life is governed by the environmental loads and in the dynamic behavior, depending on the support stiffness and thus soil-structure interaction. The effects of scour on the short-term and long-term responses of the NREL 5-MW wind turbine under operational conditions have been analyzed by using a finite element beam model with Winkler springs to model soil-structure interaction. It was found that due to scour, the modal properties of the wind turbine do not change significantly. However, the maximum bending moment in the monopile increases, leading to a significant reduction in fatigue life. Backfilling the scour hole can recover the fatigue life, depending mostly on the depth after backfilling. An approximate fatigue analysis method is proposed, based on the full time-domain analysis for 1 scour depth, predicting with good accuracy the fatigue life for different scour depths from the quasi-static changes in the bending moment

    Smart Flow Control Processes in Micro Scale

    Get PDF
    In recent years, microfluidic devices with a large surface-to-volume ratio have witnessed rapid development, allowing them to be successfully utilized in many engineering applications. A smart control process has been proposed for many years, while many new innovations and enabling technologies have been developed for smart flow control, especially concerning “smart flow control” at the microscale. This Special Issue aims to highlight the current research trends related to this topic, presenting a collection of 33 papers from leading scholars in this field. Among these include studies and demonstrations of flow characteristics in pumps or valves as well as dynamic performance in roiling mill systems or jet systems to the optimal design of special components in smart control systems

    Static Synchronous Generator Model: A New Perspective to Investigate Dynamic Characteristics and Stability Issues of Grid-Tied PWM Inverter

    Get PDF
    With increasing penetration of the renewable energy, the grid-tied PWM inverters need to take corresponding responsibilities for the security and stability of future grid, behaving like conventional rotational synchronous generator (RSG). Therefore, recognizing the inherent relationship and intrinsic differences between inverters and RSGs is essential for such target. By modeling the typical electromechanical transient of grid-tied PWM inverters, this paper first proves that PWM inverters and RSGs are similar in physical mechanism and equivalent in mathematical model, and the concept of static synchronous generator (SSG) is thereby developed. Furthermore, the comprehensive comparison between RSG and SSG is carried out in detail, and their inherent relation is built. Based on these findings, the rationality and feasibility of migrating the concepts, tools, and methods of RSG stability analysis to investigate the dynamic behaviors and stability issues of SSG is therefore confirmed. Taking stability issues as an example, the criteria of small signal and transient stability of a typical grid-tied PWM inverter is put forward to demonstrate the significance of the developed SSG model (including synchronizing coefficient, damping coefficient, inertia constant, and power-angle curve), providing clear physical interpretation on the dynamic characteristics and stability issues. The developed SSG model promotes grid-friendly integration of renewable energy to future grid and stimulates interdisciplinary research between power electronics and power system

    A new resilient risk management model for offshore wind turbine maintenance

    Get PDF
    The objective of this study is to implement the principles of Resilience Engineering (RE) for the maintenance management of Offshore Wind Turbine (OWT) systems by taking into account human and organizational factors. Resilience concepts are integrated into existing maintenance management elements and a resilient model is developed and applied to OWT in order to manage the maintenance related risks. The four main capabilities proposed by RE, i.e. responding, monitoring, anticipating and learning, are linked to a three level resilience system in order to prevent or mitigate OWT maintenance failures. The paper presents the applicability and effectiveness of RE in preventing accidents/incidents and system failures, and learning activities
    • 

    corecore