28,044 research outputs found

    Delay-Adaptive Boundary Control of Coupled Hyperbolic PDE-ODE Cascade Systems

    Full text link
    This paper presents a delay-adaptive boundary control scheme for a 2×22\times 2 coupled linear hyperbolic PDE-ODE cascade system with an unknown and arbitrarily long input delay. To construct a nominal delay-compensated control law, assuming a known input delay, a three-step backstepping design is used. Based on the certainty equivalence principle, the nominal control action is fed with the estimate of the unknown delay, which is generated from a batch least-squares identifier that is updated by an event-triggering mechanism that evaluates the growth of the norm of the system states. As a result of the closed-loop system, the actuator and plant states can be regulated exponentially while avoiding Zeno occurrences. A finite-time exact identification of the unknown delay is also achieved except for the case that all initial states of the plant are zero. As far as we know, this is the first delay-adaptive control result for systems governed by heterodirectional hyperbolic PDEs. The effectiveness of the proposed design is demonstrated in the control application of a deep-sea construction vessel with cable-payload oscillations and subject to input delay

    Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

    Full text link
    Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control, which we elucidate in this paper. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design in this paper for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAV with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is 2×22\times2 hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. This is the first safe adaptive control design for PDEs, where we introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set

    Boundary Control of Coupled Reaction-Advection-Diffusion Systems with Spatially-Varying Coefficients

    Full text link
    Recently, the problem of boundary stabilization for unstable linear constant-coefficient coupled reaction-diffusion systems was solved by means of the backstepping method. The extension of this result to systems with advection terms and spatially-varying coefficients is challenging due to complex boundary conditions that appear in the equations verified by the control kernels. In this paper we address this issue by showing that these equations are essentially equivalent to those verified by the control kernels for first-order hyperbolic coupled systems, which were recently found to be well-posed. The result therefore applies in this case, allowing us to prove H^1 stability for the closed-loop system. It also shows an interesting connection between backstepping kernels for coupled parabolic and hyperbolic problems.Comment: Submitted to IEEE Transactions on Automatic Contro
    corecore