83 research outputs found

    Composite learning backstepping control with guaranteed exponential stability and robustness

    Full text link
    Adaptive backstepping control provides a feasible solution to achieve asymptotic tracking for mismatched uncertain nonlinear systems. However, input-to-state stability depends on high-gain feedback generated by nonlinear damping terms, and closed-loop exponential stability with parameter convergence involves a stringent condition named persistent excitation (PE). This paper proposes a composite learning backstepping control (CLBC) strategy based on modular backstepping and high-order tuners to compensate for the transient process of parameter estimation and achieve closed-loop exponential stability without the nonlinear damping terms and the PE condition. A novel composite learning mechanism that maximizes the staged exciting strength is designed for parameter estimation, such that parameter convergence can be achieved under a condition of interval excitation (IE) or even partial IE that is strictly weaker than PE. An extra prediction error is employed in the adaptive law to ensure the transient performance without nonlinear damping terms. The exponential stability of the closed-loop system is proved rigorously under the partial IE or IE condition. Simulations have demonstrated the effectiveness and superiority of the proposed method in both parameter estimation and control compared to state-of-the-art methods

    Generalized recursive least squares: Stability, robustness, and excitation

    Get PDF
    We study a class of recursive least-squares estimators in an errors-in-variables setting where disturbances affect both the regressor and the regressand variables. We prove the existence and stability of an optimal steady state and robustness with respect to the disturbances in form of input-to-state and input–output stability relative to the unperturbed steady-state trajectories. Depending on the choice of some design parameters, different specific estimators can be realized within the considered class, each of which is associated with a different underlying optimization problem and with different excitation requirements for the unperturbed regressor. As expected, we find that persistence of excitation is associated with uniform, in fact exponential, convergence. In addition, we also show that choices of the design parameters are possible for which convergence and robustness hold without persistence of excitation and with the same asymptotic gain, the only difference being a loss of uniformity in the convergence rate

    Adaptive Systems: History, Techniques, Problems, and Perspectives

    Get PDF
    We survey some of the rich history of control over the past century with a focus on the major milestones in adaptive systems. We review classic methods and examples in adaptive linear systems for both control and observation/identification. The focus is on linear plants to facilitate understanding, but we also provide the tools necessary for many classes of nonlinear systems. We discuss practical issues encountered in making these systems stable and robust with respect to additive and multiplicative uncertainties. We discuss various perspectives on adaptive systems and their role in various fields. Finally, we present some of the ongoing research and expose problems in the field of adaptive control

    Indirect adaptive higher-order sliding-mode control using the certainty-equivalence principle

    Get PDF
    Seit den 50er Jahren werden große Anstrengungen unternommen, Algorithmen zu entwickeln, welche in der Lage sind Unsicherheiten und Störungen in Regelkreisen zu kompensieren. Früh wurden hierzu adaptive Verfahren, die eine kontinuierliche Anpassung der Reglerparameter vornehmen, genutzt, um die Stabilisierung zu ermöglichen. Die fortlaufende Modifikation der Parameter sorgt dabei dafür, dass strukturelle Änderungen im Systemmodell sich nicht auf die Regelgüte auswirken. Eine deutlich andere Herangehensweise wird durch strukturvariable Systeme, insbesondere die sogenannte Sliding-Mode Regelung, verfolgt. Hierbei wird ein sehr schnell schaltendes Stellsignal für die Kompensation auftretender Störungen und Modellunsicherheiten so genutzt, dass bereits ohne besonderes Vorwissen über die Störeinflüsse eine beachtliche Regelgüte erreicht werden kann. Die vorliegende Arbeit befasst sich mit dem Thema, diese beiden sehr unterschiedlichen Strategien miteinander zu verbinden und dabei die Vorteile der ursprünglichen Umsetzung zu erhalten. So benötigen Sliding-Mode Verfahren generell nur wenige Informationen über die Störung, zeigen jedoch Defizite bei Unsicherheiten, die vom Systemzustand abhängen. Auf der anderen Seite können adaptive Regelungen sehr gut parametrische Unsicherheiten kompensieren, wohingegen unmodellierte Störungen zu einer verschlechterten Regelgüte führen. Ziel dieser Arbeit ist es daher, eine kombinierte Entwurfsmethodik zu entwickeln, welche die verfügbaren Informationen über die Störeinflüsse bestmöglich ausnutzt. Hierbei wird insbesondere Wert auf einen theoretisch fundierten Stabilitätsnachweis gelegt, welcher erst durch Erkenntnisse der letzten Jahre im Bereich der Lyapunov-Theorie im Zusammenhang mit Sliding-Mode ermöglicht wurde. Anhand der gestellten Anforderungen werden Regelalgorithmen entworfen, die eine Kombination von Sliding-Mode Reglern höherer Ordnung und adaptiven Verfahren darstellen. Neben den theoretischen Betrachtungen werden die Vorteile des Verfahrens auch anhand von Simulationsbeispielen und eines Laborversuchs nachgewiesen. Es zeigt sich hierbei, dass die vorgeschlagenen Algorithmen eine Verbesserung hinsichtlich der Regelgüte als auch der Robustheit gegenüber den konventionellen Verfahren erzielen.Since the late 50s, huge efforts have been made to improve the control algorithms that are capable of compensating for uncertainties and disturbances. Adaptive controllers that adjust their parameters continuously have been used from the beginning to solve this task. This adaptation of the controller allows to maintain a constant performance even under changing conditions. A different idea is proposed by variable structure systems, in particular by the so-called sliding-mode control. The idea is to employ a very fast switching signal to compensate for disturbances or uncertainties. This thesis deals with a combination of these two rather different approaches while preserving the advantages of each method. The design of a sliding-mode controller normally does not demand sophisticated knowledge about the disturbance, while the controller's robustness against state-dependent uncertainties might be poor. On the other hand, adaptive controllers are well suited to compensate for parametric uncertainties while unstructured influence may result in a degraded performance. Hence, the objective of this work is to design sliding-mode controllers that use as much information about the uncertainty as possible and exploit this knowledge in the design. An important point is that the design procedure is based on a rigorous proof of the stability of the combined approach. Only recent results on Lyapunov theory in the field of sliding-mode made this analysis possible. It is shown that the Lyapunov function of the nominal sliding-mode controller has a direct impact on the adaptation law. Therefore, this Lyapunov function has to meet certain conditions in order to allow a proper implementation of the proposed algorithms. The main contributions of this thesis are sliding-mode controllers, extended by an adaptive part using the certainty-equivalence principle. It is shown that the combination of both approaches results in a novel controller design that is able to solve a control task even in the presence of different classes of uncertainties. In addition to the theoretical analysis, the advantages of the proposed method are demonstrated in a selection of simulation examples and on a laboratory test-bench. The experiments show that the proposed control algorithm delivers better performance in regard to chattering and robustness compared to classical sliding-mode controllers

    Least Squares Based Adaptive Control and Extremum Seeking with Active Vehicle Safety System Applications

    Get PDF
    On-line parameter estimation is one of the two key components of a typical adaptive control scheme, beside the particular control law to be used. Gradient and recursive least squares (RLS) based parameter estimation algorithms are the most widely used ones among others. Adaptive control studies in the literature mostly utilize gradient based parameter estimators for convenience in nonlinear analysis and Lyapunov analysis based constructive design. However, simulations and real-time experiments reveal that, compared to gradient based parameter estimators, RLS based parameter estimators, with proper selection of design parameters, exhibit better transient performance from the aspects of speed of convergence and robustness to measurement noise. One reason for the control theory researchers' preference of gradient algorithms to RLS ones is that there does not exist a well-established stability and convergence analysis framework for adaptive control schemes involving RLS based parameter estimation. Having this fact as one of the motivators, this thesis is on systematic design, formal stability and convergence analysis, and comparative numerical analysis of RLS parameter estimation based adaptive control schemes and extension of the same framework to adaptive extremum seeking, viz. adaptive search for (local) extremum points of a certain field. Extremum seeking designs apply to (i) finding locations of physical signal sources, (ii) minimum or maximum points of (vector) cost or potential functions for optimization, (iii) calculating optimal control parameters within a feedback control design. In this thesis, firstly, gradient and RLS based on-line parameter estimation schemes are comparatively analysed and a literature review on RLS estimation based adaptive control is provided. The comparative analysis is supported with a set of simulation examples exhibiting transient performance characteristics of RLS based parameter estimators, noting absence of such a detailed comparison study in the literature. The existing literature on RLS based adaptive control mostly follows the indirect adaptive control approach as opposed to the direct one, because of the difficulty in integrating an RLS based adaptive law within the direct approaches starting with a certain Lyapunov-like cost function to be driven to (a neighborhood) of zero. A formal constructive analysis framework for integration of RLS based estimation to direct adaptive control is proposed following the typical steps for gradient adaptive law based direct model reference adaptive control, but constructing a new Lyapunov-like function for the analysis. After illustration of the improved performance with RLS adaptive law via some simple numerical examples, the proposed RLS parameter estimation based direct adaptive control scheme is successfully applied to vehicle antilock braking system control and adaptive cruise control. The performance of the proposed scheme is numerically analysed and verified via Matlab/Simulink and CarSim based simulation tests. Similar to the direct adaptive control works, the extremum seeking approaches proposed in the literature commonly use gradient/Newton based search algorithms. As an alternative to these search algorithms, this thesis studies RLS based on-line estimation in extremum seeking aiming to enhance the transient performance compared to the existing gradient based extremum seeking. The proposed RLS estimation based extremum seeking approach is applied to active vehicle safety system control problems, including antilock braking system control and traction control, supported by Matlab/Simulink and CarSim based simulation results demonstrating the effectiveness of the proposed approach

    Robust adaptive control of switched systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.Includes bibliographical references (leaves 141-149).In this thesis, robust adaptive controllers are developed for classes of switched nonlinear systems. Switched systems are those governed by differential equations, which undergo vector field switching due to sudden changes in model characteristics. Such systems arise in many applications such as mechanical systems with contacts, electrical systems with switches, and thermal-fluidic systems with valves and phase changes. The presented controllers guarantee system stability, under typical adaptive control assumptions, for systems with piecewise differentiable bounded parameters and piecewise continuous disturbances without requiring a priori knowledge on such parameters or disturbances. The effect of plant variation and switching is reduced to piecewise continuous and impulsive inputs acting on a Bounded Input Bounded State (BIBS) stable closed loop system. This, in turn, provides a separation between the robust stability and robust performance control problems. The developed methodology provides clear guidelines for steady-state and transient performance optimization and allows for parameter scheduling and multiple model controller adjustment techniques to be utilized with no stability concerns. The results are illustrated for various systems including contact-based robotic manipulation and Atomic Force Microscope (AFM) based nano-manipulation.by Khalid El Rifai.Ph.D

    Modeling, analysis and control of robot-object nonsmooth underactuated Lagrangian systems: A tutorial overview and perspectives

    Get PDF
    International audienceSo-called robot-object Lagrangian systems consist of a class of nonsmooth underactuated complementarity Lagrangian systems, with a specific structure: an "object" and a "robot". Only the robot is actuated. The object dynamics can thus be controlled only through the action of the contact Lagrange multipliers, which represent the interaction forces between the robot and the object. Juggling, walking, running, hopping machines, robotic systems that manipulate objects, tapping, pushing systems, kinematic chains with joint clearance, crawling, climbing robots, some cable-driven manipulators, and some circuits with set-valued nonsmooth components, belong this class. This article aims at presenting their main features, then many application examples which belong to the robot-object class, then reviewing the main tools and control strategies which have been proposed in the Automatic Control and in the Robotics literature. Some comments and open issues conclude the article

    Nonlinear Burn Condition and Kinetic Profile Control in Tokamak Fusion Reactors

    Get PDF
    One of the most promising devices for realizing power production through nuclear fusion is the tokamak. In order to maximize performance, it is preferable that tokamaks achieve operating scenarios characterized by good plasma confinement, improved magnetohydrodynamic stability, and a largely non-inductively driven plasma current. Such scenarios could enable steady-state reactor operation with high fusion gain, the ratio of fusion power produced to the external heating power needed to sustain reactions. There are many experimental tokamaks around the world, each exploring different facets of plasma physics and fusion technology. These experiments have reached the point where the power released from fusion is nearly equal to the power input required to heat the plasma. The next experimental step is ITER, which aims to reach a fusion gain exceeding ten for short pulses, and to sustain a gain of five for longer pulses (around 1000 s). In order for ITER to be a success, several challenging control engineering problems must be addressed.Among these challenges is to precisely regulate the plasma density and temperature, or burn condition. Due to the nonlinear and coupled dynamics of the system, modulation of the burn condition (either during ramp-up/shut-down or in response to changing power demands) without a well designed control scheme could result in undesirable transient performance. Feedback control will also be necessary for responding to unexpected changes in plasma confinement, impurity content, or other parameters, which could significantly alter the burn condition during operation. Furthermore, although stable operating points exist for most confinement scalings, certain conditions can lead to thermal instabilities. Such instabilities can either lead to quenching or a thermal excursion in which the system moves to a higher temperature equilibrium point. In any of these situations, disruptive plasma instabilities could be triggered, stopping operation and potentially causing damage to the confinement vessel.In this work, the problem of burn condition control is addressed through the design of a nonlinear control law guaranteeing stability of desired equilibria. Multiple actuation methods, including auxiliary heating, isotopic fueling, and impurity injection, are used to ensure the burn condition is regulated even when actuators saturate. An adaptive control scheme is used to handle model uncertainty, and an online optimization scheme is proposed to ensure that the plasma is driven to an operating point that minimizes an arbitrary cost function. Due to the possible limited availability of diagnostic systems in ITER and future reactors, an output feedback control scheme is also proposed that combines the nonlinear controller with an observer that estimates the states of the burning plasma system based on available measurements. Finally, the control scheme is tested using the integrated modeling code METIS.The control of spatial profiles of parameters, including current, density, and temperature, is also an important challenge in fusion research, due to their effect on MHD stability, non-inductive current drive, and fusion power. In this work, the problem of kinetic profile control in burning plasmas is addressed through a nonlinear boundary feedback control law designed using a technique called backstepping. A novel implementation of the backstepping technique is used that enables the use of both boundary and interior actuation. The backstepping technique is then applied to the problem of current profile control in both low-confinement and high-confinement mode discharges in the DIII-D tokamak based on a first-principles-driven model of the current profile evolution. Both designs are demonstrated in simulations and experimental tests

    A Model-Free Control System Based on the Sliding Mode Control with Automatic Tuning Using as On-Line Parameter Estimation Approach

    Get PDF
    The sliding mode control algorithm and Lyapunov-based methods, have received much attention recently due to their ability to directly handle nonlinear systems while guaranteeing closed-loop tracking stability. In this work, a unique model-free sliding mode control technique has developed solely based on previous control inputs. The new method requires only knowledge of the system order and state measurements and does not require a theoretical model of the dynamic system. Lyapunov’s stability theorem is used in the controller formulation process to ensure closed-loop asymptotic stability. High frequency chattering of the control effort is reduced by using a smoothing boundary layer into the control law. Parameters variation during control operating and noise effect cannot be handled by the model-free controller if the controller tuning parameters are chosen arbitrarily since tracking performance becomes unacceptable. In addition, in previous work, the bounds of the input influence gain parameters were assumed to be known to derive the model-free controller. Therefore, in this work, a new approach is proposed for estimating the increment to the switching gain in real-time to ensure the sliding condition (which guarantees closed-loop tracking stability) is satisfied using a control law form that assumes a strictly unitary input influence gain. In formulation of estimation law, an exponential forgetting factor is combined with the least-squares estimator to ensure the updated data are used and past data are excluded. An automatic bounded forgetting tuning technique is developed to maintain the benefits of data forgetting while avoiding the possibility of gain unboundedness in absence of persistent excitation. The tuning estimator is assured that the resulting gain matrix is upper bounded regardless of the persistent excitation by suspending the data forgetting if the gain matrix reaches the specified upper bound. Simulations are performed on a series of linear and nonlinear SISO and MIMO systems with and without including actuator time-delay effects. Finally, a model is developed to simulate a quadcopter as a real-world application case. In all cases, the controller achieved perfect or near-perfect tracking performance using updated controller and on-line estimator tuning process
    corecore