4 research outputs found

    Distributed Low-Rank Adaptive Algorithms Based on Alternating Optimization and Applications

    Full text link
    This paper presents a novel distributed low-rank scheme and adaptive algorithms for distributed estimation over wireless networks. The proposed distributed scheme is based on a transformation that performs dimensionality reduction at each agent of the network followed by transmission of a reduced set of parameters to other agents and reduced-dimension parameter estimation. Distributed low-rank joint iterative estimation algorithms based on alternating optimization strategies are developed, which can achieve significantly reduced communication overhead and improved performance when compared with existing techniques. A computational complexity analysis of the proposed and existing low-rank algorithms is presented along with an analysis of the convergence of the proposed techniques. Simulations illustrate the performance of the proposed strategies in applications of wireless sensor networks and smart grids.Comment: 12 figures, 13 pages. arXiv admin note: text overlap with arXiv:1411.112

    Compressed Sensing with Probability-based Prior Information

    Full text link
    This paper deals with the design of a sensing matrix along with a sparse recovery algorithm by utilizing the probability-based prior information for compressed sensing system. With the knowledge of the probability for each atom of the dictionary being used, a diagonal weighted matrix is obtained and then the sensing matrix is designed by minimizing a weighted function such that the Gram of the equivalent dictionary is as close to the Gram of dictionary as possible. An analytical solution for the corresponding sensing matrix is derived which leads to low computational complexity. We also exploit this prior information through the sparse recovery stage and propose a probability-driven orthogonal matching pursuit algorithm that improves the accuracy of the recovery. Simulations for synthetic data and application scenarios of surveillance video are carried out to compare the performance of the proposed methods with some existing algorithms. The results reveal that the proposed CS system outperforms existing CS systems.Comment: 13 pages, 9 figure

    Study of Distributed Robust Beamforming with Low-Rank and Cross-Correlation Techniques

    Full text link
    In this work, we present a novel robust distributed beamforming (RDB) approach based on low-rank and cross-correlation techniques. The proposed RDB approach mitigates the effects of channel errors in wireless networks equipped with relays based on the exploitation of the cross-correlation between the received data from the relays at the destination and the system output and low-rank techniques. The relay nodes are equipped with an amplify-and-forward (AF) protocol and the channel errors are modeled using an additive matrix perturbation, which results in degradation of the system performance. The proposed method, denoted low-rank and cross-correlation RDB (LRCC-RDB), considers a total relay transmit power constraint in the system and the goal of maximizing the output signal-to-interference-plus-noise ratio (SINR). We carry out a performance analysis of the proposed LRCC-RDB technique along with a computational complexity study. The proposed LRCC-RDB does not require any costly online optimization procedure and simulations show an excellent performance as compared to previously reported algorithms.Comment: 14 pages, 9 figures. arXiv admin note: text overlap with arXiv:1712.0111

    Study of Diffusion Normalized Least Mean M-estimate Algorithms

    Full text link
    This work proposes diffusion normalized least mean M-estimate algorithm based on the modified Huber function, which can equip distributed networks with robust learning capability in the presence of impulsive interference. In order to exploit the system's underlying sparsity to further improve the learning performance, a sparse-aware variant is also developed by incorporating the l0l_0-norm of the estimates into the update process. We then analyze the transient, steady-state and stability behaviors of the algorithms in a unified framework. In particular, we present an analytical method that is simpler than conventional approaches to deal with the score function since it removes the requirements of integrals and Price's theorem. Simulations in various impulsive noise scenarios show that the proposed algorithms are superior to some existing diffusion algorithms and the theoretical results are verifiable.Comment: 14 pages, 13 figure
    corecore