5 research outputs found

    Approximation Algorithms for Correlated Knapsacks and Non-Martingale Bandits

    Full text link
    In the stochastic knapsack problem, we are given a knapsack of size B, and a set of jobs whose sizes and rewards are drawn from a known probability distribution. However, we know the actual size and reward only when the job completes. How should we schedule jobs to maximize the expected total reward? We know O(1)-approximations when we assume that (i) rewards and sizes are independent random variables, and (ii) we cannot prematurely cancel jobs. What can we say when either or both of these assumptions are changed? The stochastic knapsack problem is of interest in its own right, but techniques developed for it are applicable to other stochastic packing problems. Indeed, ideas for this problem have been useful for budgeted learning problems, where one is given several arms which evolve in a specified stochastic fashion with each pull, and the goal is to pull the arms a total of B times to maximize the reward obtained. Much recent work on this problem focus on the case when the evolution of the arms follows a martingale, i.e., when the expected reward from the future is the same as the reward at the current state. What can we say when the rewards do not form a martingale? In this paper, we give constant-factor approximation algorithms for the stochastic knapsack problem with correlations and/or cancellations, and also for budgeted learning problems where the martingale condition is not satisfied. Indeed, we can show that previously proposed LP relaxations have large integrality gaps. We propose new time-indexed LP relaxations, and convert the fractional solutions into distributions over strategies, and then use the LP values and the time ordering information from these strategies to devise a randomized adaptive scheduling algorithm. We hope our LP formulation and decomposition methods may provide a new way to address other correlated bandit problems with more general contexts

    Maximizing Expected Utility for Stochastic Combinatorial Optimization Problems

    Full text link
    We study the stochastic versions of a broad class of combinatorial problems where the weights of the elements in the input dataset are uncertain. The class of problems that we study includes shortest paths, minimum weight spanning trees, and minimum weight matchings, and other combinatorial problems like knapsack. We observe that the expected value is inadequate in capturing different types of {\em risk-averse} or {\em risk-prone} behaviors, and instead we consider a more general objective which is to maximize the {\em expected utility} of the solution for some given utility function, rather than the expected weight (expected weight becomes a special case). Under the assumption that there is a pseudopolynomial time algorithm for the {\em exact} version of the problem (This is true for the problems mentioned above), we can obtain the following approximation results for several important classes of utility functions: (1) If the utility function \uti is continuous, upper-bounded by a constant and \lim_{x\rightarrow+\infty}\uti(x)=0, we show that we can obtain a polynomial time approximation algorithm with an {\em additive error} ϵ\epsilon for any constant ϵ>0\epsilon>0. (2) If the utility function \uti is a concave increasing function, we can obtain a polynomial time approximation scheme (PTAS). (3) If the utility function \uti is increasing and has a bounded derivative, we can obtain a polynomial time approximation scheme. Our results recover or generalize several prior results on stochastic shortest path, stochastic spanning tree, and stochastic knapsack. Our algorithm for utility maximization makes use of the separability of exponential utility and a technique to decompose a general utility function into exponential utility functions, which may be useful in other stochastic optimization problems.Comment: 31 pages, Preliminary version appears in the Proceeding of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2011), This version contains several new results ( results (2) and (3) in the abstract
    corecore