4 research outputs found

    Adaptive Semantic Segmentation with a Strategic Curriculum of Proxy Labels

    Full text link
    Training deep networks for semantic segmentation requires annotation of large amounts of data, which can be time-consuming and expensive. Unfortunately, these trained networks still generalize poorly when tested in domains not consistent with the training data. In this paper, we show that by carefully presenting a mixture of labeled source domain and proxy-labeled target domain data to a network, we can achieve state-of-the-art unsupervised domain adaptation results. With our design, the network progressively learns features specific to the target domain using annotation from only the source domain. We generate proxy labels for the target domain using the network's own predictions. Our architecture then allows selective mining of easy samples from this set of proxy labels, and hard samples from the annotated source domain. We conduct a series of experiments with the GTA5, Cityscapes and BDD100k datasets on synthetic-to-real domain adaptation and geographic domain adaptation, showing the advantages of our method over baselines and existing approaches

    Training Data Subset Search with Ensemble Active Learning

    Full text link
    Deep Neural Networks (DNNs) often rely on very large datasets for training. Given the large size of such datasets, it is conceivable that they contain certain samples that either do not contribute or negatively impact the DNN's optimization. Modifying the training distribution in a way that excludes such samples could provide an effective solution to both improve performance and reduce training time. In this paper, we propose to scale up ensemble Active Learning (AL) methods to perform acquisition at a large scale (10k to 500k samples at a time). We do this with ensembles of hundreds of models, obtained at a minimal computational cost by reusing intermediate training checkpoints. This allows us to automatically and efficiently perform a training data subset search for large labeled datasets. We observe that our approach obtains favorable subsets of training data, which can be used to train more accurate DNNs than training with the entire dataset. We perform an extensive experimental study of this phenomenon on three image classification benchmarks (CIFAR-10, CIFAR-100 and ImageNet), as well as an internal object detection benchmark for prototyping perception models for autonomous driving. Unlike existing studies, our experiments on object detection are at the scale required for production-ready autonomous driving systems. We provide insights on the impact of different initialization schemes, acquisition functions and ensemble configurations at this scale. Our results provide strong empirical evidence that optimizing the training data distribution can provide significant benefits on large scale vision tasks

    Large-Scale Visual Active Learning with Deep Probabilistic Ensembles

    Full text link
    Annotating the right data for training deep neural networks is an important challenge. Active learning using uncertainty estimates from Bayesian Neural Networks (BNNs) could provide an effective solution to this. Despite being theoretically principled, BNNs require approximations to be applied to large-scale problems, where both performance and uncertainty estimation are crucial. In this paper, we introduce Deep Probabilistic Ensembles (DPEs), a scalable technique that uses a regularized ensemble to approximate a deep BNN. We conduct a series of large-scale visual active learning experiments to evaluate DPEs on classification with the CIFAR-10, CIFAR-100 and ImageNet datasets, and semantic segmentation with the BDD100k dataset. Our models require significantly less training data to achieve competitive performances, and steadily improve upon strong active learning baselines as the annotation budget is increased.Comment: arXiv admin note: text overlap with arXiv:1811.0264

    Self-Training and Adversarial Background Regularization for Unsupervised Domain Adaptive One-Stage Object Detection

    Full text link
    Deep learning-based object detectors have shown remarkable improvements. However, supervised learning-based methods perform poorly when the train data and the test data have different distributions. To address the issue, domain adaptation transfers knowledge from the label-sufficient domain (source domain) to the label-scarce domain (target domain). Self-training is one of the powerful ways to achieve domain adaptation since it helps class-wise domain adaptation. Unfortunately, a naive approach that utilizes pseudo-labels as ground-truth degenerates the performance due to incorrect pseudo-labels. In this paper, we introduce a weak self-training (WST) method and adversarial background score regularization (BSR) for domain adaptive one-stage object detection. WST diminishes the adverse effects of inaccurate pseudo-labels to stabilize the learning procedure. BSR helps the network extract discriminative features for target backgrounds to reduce the domain shift. Two components are complementary to each other as BSR enhances discrimination between foregrounds and backgrounds, whereas WST strengthen class-wise discrimination. Experimental results show that our approach effectively improves the performance of the one-stage object detection in unsupervised domain adaptation setting.Comment: ICCV 2019 (oral
    corecore