908 research outputs found

    Adaptive second-order sliding mode control of UAVs for civil applications

    Full text link
    Quadcopters, as unmanned aerial vehicles (UAVs), have great potential in civil applications such as surveying, building monitoring, and infrastructure condition assessment. Quadcopters, however, are relatively sensitive to noises and disturbances so that their performance may be quickly downgraded in the case of inadequate control, system uncertainties and/or external disturbances. In this study, we deal with the quadrotor low-level control by proposing a robust scheme named the adaptive second-order quasi-continuous sliding mode control (adaptive 2-QCSM). The ultimate objective is for robust attitude control of the UAV in monitoring and inspection of built infrastructure. First, the mathematical model of the quadcopter is derived considering nonlinearity, strong coupling, uncertain dynamics and external disturbances. The control design includes the selection of the sliding manifold and the development of quasi-continuous second-order sliding mode controller with an adaptive gain. Stability of the overall control system is analysed by using a global Lyapunov function for convergence of both the sliding dynamics and adaptation scheme. Extensive simulations have been carried out for evaluation. Results show that the proposed controller can achieve robustness against disturbances or parameter variations and has better tracking performance in comparison with experimental responses of a UAV in a real-time monitoring task

    Robust Control of Vectored Thrust Aerial Vehicles via Variable Structure Control Methods

    Full text link
    The popularity of Unmanned Aerial Vehicles (UAVs) has grown rapidly in many civil and military applications in the last few decades. Recent UAV applications include crop monitoring, terrain mapping and aerial photography, where one or several image sensors attached to the UAV provide important terrain information. A thrust vectoring aerial vehicle, a vehicle with the ability to change the direction of thrust generated while keeping the UAV body at a zero roll and pitch orientation, can serve well in such applications by allowing the sensors to capture stable image data without additional gimbals, reducing the payload and cost while increasing the flight endurance. Furthermore, thrust vectoring UAVs can perform fast forward flight as well as hover operations with non-zero pitch: features which can serve well in military applications. The first part of this research focuses on developing a comprehensive dynamic model and a low level attitude and position control structure for a tri-rotor UAV with thrust vectoring capability, namely the Vectored Thrust Aerial Vehicle. Nonlinear dynamics of UAVs require robust control methods to realize stable flight. Special attention needs to be given to wind gust disturbances, and parametric uncertainties. Sliding Mode Control , a type of Variable Structure Controller, has served well over the years in controlling UAVs and other dynamic systems. However, conventional Sliding Mode Control results in a high frequency switching behavior of the control signal. Furthermore, Sliding Mode Control does not focus on fast set-point regulation or tracking, which can be advantageous for UAVs and many other robotic systems. Taking these research gaps into account, this work presents an Adaptive Variable Structure Control method, which can acquire fast set-point regulation while maintaining robustness against external disturbances and uncertainties. The adaptive algorithm developed in this work is fundamentally different from current Adaptive Sliding Mode Control and other Variable Structure methods. Simulation and experimental results are provided to demonstrate the superiority of the proposed approach compared to Sliding Mode Control. The novel adaptive algorithm is applicable to many nonlinear dynamic systems including UAVs, robot arm manipulators and space robots. The same adaptive concept is then utilized to develop an Adaptive Second Order Sliding Mode Controller. Compared to existing Second Order Sliding Mode Control methods, the proposed methodology is able to produce reduced sliding manifold reach times and consume less amount of control resources: features which are particularly advantageous for systems with limited control resources. Simulations are conducted to evaluate the performance of the proposed Adaptive Second Order Sliding Mode Control algorithm

    The adaptive control system of quadrocopter motion

    Get PDF
    In this paper we present a system for automatic control of a quadrocopter based on the adaptive control system. The task is to ensure the motion of the quadrocopter along the given route and to control the stabilization of the quadrocopter in the air in a horizontal or in a given angular position by sending control signals to the engines. The nonlinear model of a quadrocopter is expressed in the form of a linear non-stationary system

    The adaptive control system of quadrocopter motion

    Get PDF
    In this paper we present a system for automatic control of a quadrocopter based on the adaptive control system. The task is to ensure the motion of the quadrocopter along the given route and to control the stabilization of the quadrocopter in the air in a horizontal or in a given angular position by sending control signals to the engines. The nonlinear model of a quadrocopter is expressed in the form of a linear non-stationary system

    Guidance of quadrotor unmanned aerial vehicles via adaptive multiple-surface sliding mode control

    Get PDF
    In many application domains, navigation of unmanned aerial vehicles (UAVs) requires a planar flight to move along a desired path or to track a moving object under uncertain conditions. In this paper, we propose a robust control approach for quadrotor UAVs performing a nonholonomic-like navigation with a predefined velocity based guidance law. Specifically, the quadrotor model is first recast in the framework of nonholonomic systems, and then an adaptive multiple-surface sliding mode approach, with suboptimal second order sliding mode control, is applied. The robustness features of the proposed approach are discussed and assessed in simulation

    Dynamic modeling and control of a Quadrotor using linear and nonlinear approaches

    Get PDF
    With the huge advancements in miniature sensors, actuators and processors depending mainly on the Micro and Nano-Electro-Mechanical-Systems (MEMS/NEMS), many researches are now focusing on developing miniature flying vehicles to be used in both research and commercial applications. This thesis work presents a detailed mathematical model for a Vertical Takeo ff and Landing (VTOL) type Unmanned Aerial Vehicle(UAV) known as the quadrotor. The nonlinear dynamic model of the quadrotor is formulated using the Newton-Euler method, the formulated model is detailed including aerodynamic effects and rotor dynamics that are omitted in many literature. The motion of the quadrotor can be divided into two subsystems; a rotational subsystem (attitude and heading) and a translational subsystem (altitude and x and y motion). Although the quadrotor is a 6 DOF underactuated system, the derived rotational subsystem is fully actuated, while the translational subsystem is underactuated. The derivation of the mathematical model is followed by the development of four control approaches to control the altitude, attitude, heading and position of the quadrotor in space. The fi rst approach is based on the linear Proportional-Derivative-Integral (PID) controller. The second control approach is based on the nonlinear Sliding Mode Controller (SMC). The third developed controller is a nonlinear Backstepping controller while the fourth is a Gain Scheduling based PID controller. The parameters and gains of the forementioned controllers were tuned using Genetic Algorithm (GA) technique to improve the systems dynamic response. Simulation based experiments were conducted to evaluate and compare the performance of the four developed control techniques in terms of dynamic performance, stability and the effect of possible disturbances

    Fault tolerant control of multi-rotor unmanned aerial vehicles using sliding mode based schemes

    Get PDF
    This thesis investigates fault-tolerant control (FTC) for the specific application of small multirotor unmanned aerial vehicles (Unmanned Aerial Vehicle (UAV)s). The fault-tolerant controllers in this thesis are based on the combination of sliding mode control with control allocation where the control signals are distributed based on motors' health level. This alleviates the need to reconfigure the overall structure of the controllers. The thesis considered both the over actuated (sufficient redundancy) and under-actuated UAVs. Three multirotor UAVs have been considered in this thesis which includes a quadrotor (4 rotors), an Octocopter (8 rotors) and a spherical UAV. The non-linear mathematical models for each of the UAVs are presented. One of the main contributions of this thesis is the hardware implementation of the sliding mode Fault Tolerant Control (FTC) scheme on an open-source autopilot microcontroller called Pixhawk for a quadrotor UAV. The controller was developed in Simulink and implemented on the microcontroller using the Matlab/Simulink support packages. A gimbal- based test rig was developed and built to offer a safe test bed for testing control designs. Actual flight tests were done which showed sound responses during fault-free and faulty scenarios. This work represents one of successful implementation work of sliding mode FTC in the literature. Another key contribution of this thesis is the development of the mathematical model of a unique spherical UAV with highly redundant control inputs. The use of novel 8 flaps and 2 rotors configuration of the spherical UAV considered in this thesis provides a unique fault tolerant capability, especially when combined with the sliding mode-based FTC scheme. A key development in the later chapters of the thesis considers fault-tolerant control strategy when no redundancy is available. Unlike many works which consider FTC on quadrotors in the literature (which can only handle faults), the proposed schemes in the later chapters also include cases when failures also occur converting the system to an under actuated system. In one chapter, a bespoke Linear Parameter Varying (LPV) based controller is developed for a reduced attitude dynamics system by exploiting non-standard equation of motions which relates to position acceleration and load factor dynamics. This is unique as compared to the typical Euler angle control (roll, pitch and yaw angle control). In the last chapter, a fault-tolerant control scheme which can handle both the over and under actuated system is presented. The scheme considers an octocopter and can be used in fault-free, faulty and failure conditions up to two remaining motors. The scheme exploits the differential flatness property, another unique property of multirotor UAVs. This allows both inner loop and outer loop controller to be designed using sliding mode (as opposed to many sliding mode FTC in the literature, which only considers sliding mode for the inner loop control)
    corecore