3 research outputs found

    Learning and discovery in incremental knowledge acquisition

    Full text link
    Knowledge Based Systems (KBS) have been actively investigated since the early period of AI. There are four common methods of building expert systems: modeling approaches, programming approaches, case-based approaches and machine-learning approaches. One particular technique is Ripple Down Rules (RDR) which may be classified as an incremental case-based approach. Knowledge needs to be acquired from experts in the context of individual cases viewed by them. In the RDR framework, the expert adds a new rule based on the context of an individual case. This task is simple and only affects the expert s workflow minimally. The rule added fixes an incorrect interpretation made by the KBS but with minimal impact on the KBS's previous correct performance. This provides incremental improvement. Despite these strengths of RDR, there are some limitations including rule redundancy, lack of intermediate features and lack of models. This thesis addresses these RDR limitations by applying automatic learning algorithms to reorganize the knowledge base, to learn intermediate features and possibly to discover domain models. The redundancy problem occurs because rules created in particular contexts which should have more general application. We address this limitation by reorganizing the knowledge base and removing redundant rules. Removal of redundant rules should also reduce the number of future knowledge acquisition sessions. Intermediate features improve modularity, because the expert can deal with features in groups rather than individually. In addition to the manual creation of intermediate features for RDR, we propose the automated discovery of intermediate features to speed up the knowledge acquisition process by generalizing existing rules. Finally, the Ripple Down Rules approach facilitates rapid knowledge acquisition as it can be initialized with a minimal ontology. Despite minimal modeling, we propose that a more developed knowledge model can be extracted from an existing RDR KBS. This may be useful in using RDR KBS for other applications. The most useful of these three developments was the automated discovery of intermediate features. This made a significant difference to the number of knowledge acquisition sessions required

    Similarity Search in Medical Data

    Get PDF
    The ongoing automation in our modern information society leads to a tremendous rise in the amount as well as complexity of collected data. In medical imaging for example the electronic availability of extensive data collected as part of clinical trials provides a remarkable potentiality to detect new relevant features in complex diseases like brain tumors. Using data mining applications for the analysis of the data raises several problems. One problem is the localization of outstanding observations also called outliers in a data set. In this work a technique for parameter-free outlier detection, which is based on data compression and a general data model which combines the Generalized Normal Distribution (GND) with independent components, to cope with existing problems like parameter settings or implicit data distribution assumptions, is proposed. Another problem in many modern applications amongst others in medical imaging is the efficient similarity search in uncertain data. At present, an adequate therapy planning of newly detected brain tumors assumedly of glial origin needs invasive biopsy due to the fact that prognosis and treatment, both vary strongly for benign, low-grade, and high-grade tumors. To date differentiation of tumor grades is mainly based on the expertise of neuroradiologists examining contrast-enhanced Magnetic Resonance Images (MRI). To assist neuroradiologist experts during the differentiation between tumors of different malignancy we proposed a novel, efficient similarity search technique for uncertain data. The feature vector of an object is thereby not exactly known but is rather defined by a Probability Density Function (PDF) like a Gaussian Mixture Model (GMM). Previous work is limited to axis-parallel Gaussian distributions, hence, correlations between different features are not considered in these similarity searches. In this work a novel, efficient similarity search technique for general GMMs without independence assumption is presented. The actual components of a GMM are approximated in a conservative but tight way. The conservativity of the approach leads to a filter-refinement architecture, which guarantees no false dismissals and the tightness of the approximations causes good filter selectivity. An extensive experimental evaluation of the approach demonstrates a considerable speed-up of similarity queries on general GMMs. Additionally, promising results for advancing the differentiation between brain tumors of different grades could be obtained by applying the approach to four-dimensional Magnetic Resonance Images of glioma patients
    corecore