399 research outputs found

    Resilient and Scalable Forwarding for Software-Defined Networks with P4-Programmable Switches

    Get PDF
    Traditional networking devices support only fixed features and limited configurability. Network softwarization leverages programmable software and hardware platforms to remove those limitations. In this context the concept of programmable data planes allows directly to program the packet processing pipeline of networking devices and create custom control plane algorithms. This flexibility enables the design of novel networking mechanisms where the status quo struggles to meet high demands of next-generation networks like 5G, Internet of Things, cloud computing, and industry 4.0. P4 is the most popular technology to implement programmable data planes. However, programmable data planes, and in particular, the P4 technology, emerged only recently. Thus, P4 support for some well-established networking concepts is still lacking and several issues remain unsolved due to the different characteristics of programmable data planes in comparison to traditional networking. The research of this thesis focuses on two open issues of programmable data planes. First, it develops resilient and efficient forwarding mechanisms for the P4 data plane as there are no satisfying state of the art best practices yet. Second, it enables BIER in high-performance P4 data planes. BIER is a novel, scalable, and efficient transport mechanism for IP multicast traffic which has only very limited support of high-performance forwarding platforms yet. The main results of this thesis are published as 8 peer-reviewed and one post-publication peer-reviewed publication. The results cover the development of suitable resilience mechanisms for P4 data planes, the development and implementation of resilient BIER forwarding in P4, and the extensive evaluations of all developed and implemented mechanisms. Furthermore, the results contain a comprehensive P4 literature study. Two more peer-reviewed papers contain additional content that is not directly related to the main results. They implement congestion avoidance mechanisms in P4 and develop a scheduling concept to find cost-optimized load schedules based on day-ahead forecasts

    Predicting and Recovering Link Failure Localization Using Competitive Swarm Optimization for DSR Protocol in MANET

    Get PDF
    Portable impromptu organization is a self-putting together, major construction-less, independent remote versatile hub that exists without even a trace of a determined base station or government association. MANET requires no extraordinary foundation as the organization is unique. Multicasting is an urgent issue in correspondence organizations. Multicast is one of the effective methods in MANET. In multicasting, information parcels from one hub are communicated to a bunch of recipient hubs all at once, at a similar time. In this research work, Failure Node Detection and Efficient Node Localization in a MANET situation are proposed. Localization in MANET is a main area that attracts significant research interest. Localization is a method to determine the nodes’ location in the communication network. A novel routing algorithm, which is used for Predicting and Recovering Link Failure Localization using a Genetic Algorithm with Competitive Swarm Optimization (PRLFL-GACSO) Algorithm is proposed in this study to calculate and recover link failure in MANET. The process of link failure detection is accomplished using mathematical modelling of the genetic algorithm and the routing is attained using the Competitive Swarm optimization technique. The result proposed MANET method makes use of the CSO algorithm, which facilitates a well-organized packet transfer from the source node to the destination node and enhances DSR routing performance. Based on node movement, link value, and endwise delay, the optimal route is found. The main benefit of the PRLFL-GACSO Algorithm is it achieves multiple optimal solutions over global information. Further, premature convergence is avoided using Competitive Swarm Optimization (CSO). The suggested work is measured based on the Ns simulator. The presentation metrix are PDR, endwise delay, power consumption, hit ratio, etc. The presentation of the proposed method is almost 4% and 5% greater than the present TEA-MDRP, RSTA-AOMDV, and RMQS-ua methods. After, the suggested method attains greater performance for detecting and recovering link failure. In future work, the hybrid multiway routing protocols are presented to provide link failure and route breakages and liability tolerance at the time of node failure, and it also increases the worth of service aspects, respectively

    An Internet of Things (IoT) based wide-area Wireless Sensor Network (WSN) platform with mobility support.

    Get PDF
    Wide-area remote monitoring applications use cellular networks or satellite links to transfer sensor data to the central storage. Remote monitoring applications uses Wireless Sensor Networks (WSNs) to accommodate more Sensor Nodes (SNs) and for better management. Internet of Things (IoT) network connects the WSN with the data storage and other application specific services using the existing internet infrastructure. Both cellular networks, such as the Narrow-Band IoT (NB-IoT), and satellite links will not be suitable for point-to-point connections of the SNs due to their lack of coverage, high cost, and energy requirement. Low Power Wireless Area Network (LPWAN) is used to interconnect all the SNs and accumulate the data to a single point, called Gateway, before sending it to the IoT network. WSN implements clustering of the SNs to increase the network coverage and utilizes multiple wireless links between the repeater nodes (called hops) to reach the gateway at a longer distance. Clustered WSN can cover up to a few km using the LPWAN technologies such as Zigbee using multiple hops. Each Zigbee link can be from 200 m to 500 m long. Other LPWAN technologies, such as LoRa, can facilitate an extended range from 1km to 15km. However, the LoRa will not be suitable for the clustered WSN due to its long Time on Air (TOA) which will introduce data transmission delay and become severe with the increase of hop count. Besides, a sensor node will need to increase the antenna height to achieve the long-range benefit of Lora using a single link (hop) instead of using multiple hops to cover the same range. With the increased WSN coverage area, remote monitoring applications such as smart farming may require mobile sensor nodes. This research focuses on the challenges to overcome LoRa’s limitations (long TOA and antenna height) and accommodation of mobility in a high-density and wide-area WSN for future remote monitoring applications. Hence, this research proposes lightweight communication protocols and networking algorithms using LoRa to achieve mobility, energy efficiency and wider coverage of up to a few hundred km for the WSN. This thesis is divided into four parts. It presents two data transmission protocols for LoRa to achieve a higher data rate and wider network coverage, one networking algorithm for wide-area WSN and a channel synchronization algorithm to improve the data rate of LoRa links. Part one presents a lightweight data transmission protocol for LoRa using a mobile data accumulator (called data sink) to increase the monitoring coverage area and data transmission energy efficiency. The proposed Lightweight Dynamic Auto Reconfigurable Protocol (LDAP) utilizes direct or single hop to transmit data from the SNs using one of them as the repeater node. Wide-area remote monitoring applications such as Water Quality Monitoring (WQM) can acquire data from geographically distributed water resources using LDAP, and a mobile Data Sink (DS) mounted on an Unmanned Aerial Vehicle (UAV). The proposed LDAP can acquire data from a minimum of 147 SNs covering 128 km in one direction reducing the DS requirement down to 5% comparing other WSNs using Zigbee for the same coverage area with static DS. Applications like smart farming and environmental monitoring may require mobile sensor nodes (SN) and data sinks (DS). The WSNs for these applications will require real-time network management algorithms and routing protocols for the dynamic WSN with mobility that is not feasible using static WSN technologies. This part proposes a lightweight clustering algorithm for the dynamic WSN (with mobility) utilizing the proposed LDAP to form clusters in real-time during the data accumulation by the mobile DS. The proposed Lightweight Dynamic Clustering Algorithm (LDCA) can form real-time clusters consisting of mobile or stationary SNs using mobile DS or static GW. WSN using LoRa and LDCA increases network capacity and coverage area reducing the required number of DS. It also reduces clustering energy to 33% and shows clustering efficiency of up to 98% for single-hop clustering covering 100 SNs. LoRa is not suitable for a clustered WSN with multiple hops due to its long TOA, depending on the LoRa link configurations (bandwidth and spreading factor). This research proposes a channel synchronization algorithm to improve the data rate of the LoRa link by combining multiple LoRa radio channels in a single logical channel. This increased data rate will enhance the capacity of the clusters in the WSN supporting faster clustering with mobile sensor nodes and data sink. Along with the LDCA, the proposed Lightweight Synchronization Algorithm for Quasi-orthogonal LoRa channels (LSAQ) facilitating multi-hop data transfer increases WSN capacity and coverage area. This research investigates quasi-orthogonality features of LoRa in terms of radio channel frequency, spreading factor (SF) and bandwidth. It derived mathematical models to obtain the optimal LoRa parameters for parallel data transmission using multiple SFs and developed a synchronization algorithm for LSAQ. The proposed LSAQ achieves up to a 46% improvement in network capacity and 58% in data rate compared with the WSN using the traditional LoRa Medium Access Control (MAC) layer protocols. Besides the high-density clustered WSN, remote monitoring applications like plant phenotyping may require transferring image or high-volume data using LoRa links. Wireless data transmission protocols used for high-volume data transmission using the link with a low data rate (like LoRa) requiring multiple packets create a significant amount of packet overload. Besides, the reliability of these data transmission protocols is highly dependent on acknowledgement (ACK) messages creating extra load on overall data transmission and hence reducing the application-specific effective data rate (goodput). This research proposes an application layer protocol to improve the goodput while transferring an image or sequential data over the LoRa links in the WSN. It uses dynamic acknowledgement (DACK) protocol for the LoRa physical layer to reduce the ACK message overhead. DACK uses end-of-transmission ACK messaging and transmits multiple packets as a block. It retransmits missing packets after receiving the ACK message at the end of multiple blocks. The goodput depends on the block size and the number of lossy packets that need to be retransmitted. It shows that the DACK LoRa can reduce the total ACK time 10 to 30 times comparing stop-wait protocol and ten times comparing multi-packet ACK protocol. The focused wide-area WSN and mobility requires different matrices to be evaluated. The performance evaluation matrices used for the static WSN do not consider the mobility and the related parameters, such as clustering efficiency in the network and hence cannot evaluate the performance of the proposed wide-area WSN platform supporting mobility. Therefore, new, and modified performance matrices are proposed to measure dynamic performance. It can measure the real-time clustering performance using the mobile data sink and sensor nodes, the cluster size, the coverage area of the WSN and more. All required hardware and software design, dimensioning, and performance evaluation models are also presented

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    MOCAST 2021

    Get PDF
    The 10th International Conference on Modern Circuit and System Technologies on Electronics and Communications (MOCAST 2021) will take place in Thessaloniki, Greece, from July 5th to July 7th, 2021. The MOCAST technical program includes all aspects of circuit and system technologies, from modeling to design, verification, implementation, and application. This Special Issue presents extended versions of top-ranking papers in the conference. The topics of MOCAST include:Analog/RF and mixed signal circuits;Digital circuits and systems design;Nonlinear circuits and systems;Device and circuit modeling;High-performance embedded systems;Systems and applications;Sensors and systems;Machine learning and AI applications;Communication; Network systems;Power management;Imagers, MEMS, medical, and displays;Radiation front ends (nuclear and space application);Education in circuits, systems, and communications

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field
    • 

    corecore