20,083 research outputs found

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Speech Synthesis Based on Hidden Markov Models

    Get PDF

    Listening for Sirens: Locating and Classifying Acoustic Alarms in City Scenes

    Get PDF
    This paper is about alerting acoustic event detection and sound source localisation in an urban scenario. Specifically, we are interested in spotting the presence of horns, and sirens of emergency vehicles. In order to obtain a reliable system able to operate robustly despite the presence of traffic noise, which can be copious, unstructured and unpredictable, we propose to treat the spectrograms of incoming stereo signals as images, and apply semantic segmentation, based on a Unet architecture, to extract the target sound from the background noise. In a multi-task learning scheme, together with signal denoising, we perform acoustic event classification to identify the nature of the alerting sound. Lastly, we use the denoised signals to localise the acoustic source on the horizon plane, by regressing the direction of arrival of the sound through a CNN architecture. Our experimental evaluation shows an average classification rate of 94%, and a median absolute error on the localisation of 7.5{\deg} when operating on audio frames of 0.5s, and of 2.5{\deg} when operating on frames of 2.5s. The system offers excellent performance in particularly challenging scenarios, where the noise level is remarkably high.Comment: 6 pages, 9 figure

    Joint Uncertainty Decoding with Unscented Transform for Noise Robust Subspace Gaussian Mixture Models

    Get PDF
    Common noise compensation techniques use vector Taylor series (VTS) to approximate the mismatch function. Recent work shows that the approximation accuracy may be improved by sampling. One such sampling technique is the unscented transform (UT), which draws samples deterministically from clean speech and noise model to derive the noise corrupted speech parameters. This paper applies UT to noise compensation of the subspace Gaussian mixture model (SGMM). Since UT requires relatively smaller number of samples for accurate estimation, it has significantly lower computational cost compared to other random sampling techniques. However, the number of surface Gaussians in an SGMM is typically very large, making the direct application of UT, for compensating individual Gaussian components, computationally impractical. In this paper, we avoid the computational burden by employing UT in the framework of joint uncertainty decoding (JUD), which groups all the Gaussian components into small number of classes, sharing the compensation parameters by class. We evaluate the JUD-UT technique for an SGMM system using the Aurora 4 corpus. Experimental results indicate that UT can lead to increased accuracy compared to VTS approximation if the JUD phase factor is untuned, and to similar accuracy if the phase factor is tuned empirically. 1
    corecore