802 research outputs found

    Knowledge-guided Pairwise Reconstruction Network for Weakly Supervised Referring Expression Grounding

    Full text link
    Weakly supervised referring expression grounding (REG) aims at localizing the referential entity in an image according to linguistic query, where the mapping between the image region (proposal) and the query is unknown in the training stage. In referring expressions, people usually describe a target entity in terms of its relationship with other contextual entities as well as visual attributes. However, previous weakly supervised REG methods rarely pay attention to the relationship between the entities. In this paper, we propose a knowledge-guided pairwise reconstruction network (KPRN), which models the relationship between the target entity (subject) and contextual entity (object) as well as grounds these two entities. Specifically, we first design a knowledge extraction module to guide the proposal selection of subject and object. The prior knowledge is obtained in a specific form of semantic similarities between each proposal and the subject/object. Second, guided by such knowledge, we design the subject and object attention module to construct the subject-object proposal pairs. The subject attention excludes the unrelated proposals from the candidate proposals. The object attention selects the most suitable proposal as the contextual proposal. Third, we introduce a pairwise attention and an adaptive weighting scheme to learn the correspondence between these proposal pairs and the query. Finally, a pairwise reconstruction module is used to measure the grounding for weakly supervised learning. Extensive experiments on four large-scale datasets show our method outperforms existing state-of-the-art methods by a large margin.Comment: Accepted by ACMMM 2019. arXiv admin note: text overlap with arXiv:1908.1056

    Referring Expression Comprehension: A Survey of Methods and Datasets

    Full text link
    Referring expression comprehension (REC) aims to localize a target object in an image described by a referring expression phrased in natural language. Different from the object detection task that queried object labels have been pre-defined, the REC problem only can observe the queries during the test. It thus more challenging than a conventional computer vision problem. This task has attracted a lot of attention from both computer vision and natural language processing community, and several lines of work have been proposed, from CNN-RNN model, modular network to complex graph-based model. In this survey, we first examine the state of the art by comparing modern approaches to the problem. We classify methods by their mechanism to encode the visual and textual modalities. In particular, we examine the common approach of joint embedding images and expressions to a common feature space. We also discuss modular architectures and graph-based models that interface with structured graph representation. In the second part of this survey, we review the datasets available for training and evaluating REC systems. We then group results according to the datasets, backbone models, settings so that they can be fairly compared. Finally, we discuss promising future directions for the field, in particular the compositional referring expression comprehension that requires longer reasoning chain to address.Comment: Accepted to IEEE TM

    Distilling Coarse-to-Fine Semantic Matching Knowledge for Weakly Supervised 3D Visual Grounding

    Full text link
    3D visual grounding involves finding a target object in a 3D scene that corresponds to a given sentence query. Although many approaches have been proposed and achieved impressive performance, they all require dense object-sentence pair annotations in 3D point clouds, which are both time-consuming and expensive. To address the problem that fine-grained annotated data is difficult to obtain, we propose to leverage weakly supervised annotations to learn the 3D visual grounding model, i.e., only coarse scene-sentence correspondences are used to learn object-sentence links. To accomplish this, we design a novel semantic matching model that analyzes the semantic similarity between object proposals and sentences in a coarse-to-fine manner. Specifically, we first extract object proposals and coarsely select the top-K candidates based on feature and class similarity matrices. Next, we reconstruct the masked keywords of the sentence using each candidate one by one, and the reconstructed accuracy finely reflects the semantic similarity of each candidate to the query. Additionally, we distill the coarse-to-fine semantic matching knowledge into a typical two-stage 3D visual grounding model, which reduces inference costs and improves performance by taking full advantage of the well-studied structure of the existing architectures. We conduct extensive experiments on ScanRefer, Nr3D, and Sr3D, which demonstrate the effectiveness of our proposed method.Comment: ICCV202

    Who are you referring to?:Coreference resolution in image narrations

    Get PDF
    Coreference resolution aims to identify words and phrases which refer to same entity in a text, a core task in natural language processing. In this paper, we extend this task to resolving coreferences in long-form narrations of visual scenes. First we introduce a new dataset with annotated coreference chains and their bounding boxes, as most existing image-text datasets only contain short sentences without coreferring expressions or labeled chains. We propose a new technique that learns to identify coreference chains using weak supervision, only from image-text pairs and a regularization using prior linguistic knowledge. Our model yields large performance gains over several strong baselines in resolving coreferences. We also show that coreference resolution helps improving grounding narratives in images

    Discriminative Triad Matching and Reconstruction for Weakly Referring Expression Grounding

    Get PDF
    In this paper, we are tackling the weakly-supervised referring expression grounding task, for the localization of a referent object in an image according to a query sentence, where the mapping between image regions and queries are not available during the training stage. In traditional methods, an object region that best matches the referring expression is picked out, and then the query sentence is reconstructed from the selected region, where the reconstruction difference serves as the loss for back-propagation. The existing methods, however, conduct both the matching and the reconstruction approximately as they ignore the fact that the matching correctness is unknown. To overcome this limitation, a discriminative triad is designed here as the basis to the solution, through which a query can be converted into one or multiple discriminative triads in a very scalable way. Based on the discriminative triad, we further propose the triad-level matching and reconstruction modules which are lightweight yet effective for the weakly-supervised training, making it three times lighter and faster than the previous state-of-the-art methods. One important merit of our work is its superior performance despite the simple and neat design. Specifically, the proposed method achieves a new state-of-the-art accuracy when evaluated on RefCOCO (39.21%), RefCOCO+ (39.18%) and RefCOCOg (43.24%) datasets, that is 4.17%, 4.08% and 7.8% higher than the previous one, respectively.Comment: TPAM
    • …
    corecore